METAL COMPLEXES OF AROMATIC AMINE N-OXIDES

NICHOL	A C 34	KARA	YANNIS.

Amoco Chemicals Corporation, Amoco Research Center, Napervalle, Illinois 60540 (U.S.A.)

LOUIS L PYTLEWSKI and CHESTER M MIKULSKI

Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104 (U.S.A.) (Received February 2nd, 1972, revised December 21st, 1972)

CONTENTS

۸	Introduction	94
B	Atomatic amine N-oxides	94
_	(i) Preparation and properties	94
	(ii) Substituent effects and correlations	95
	(iii) Donor properties	97
c	Metal complexes of mono-N-oxides of atomatic unities	98
•	(i) Preparation of metal complexes and some reactions between N-oxides and metallic	
	compounds	98
	(ii) Generalities	100
	(iii) Infrared spectra	104
	(iv) Electronic spectra	110
	(v) Magnetic properties	117
	(vi) Other properties	120
	(vii)Stereochemical aspects of cationic metal complexes	124
	(viii)Metal complexes of monodentate mono-N-oxide ligands	127
ь	Metal complexes of aromatic amine N-oxide and diamine N, N-dioxide chelating agents	139
Ĕ		146
_	eferences	149

ABBREVIATIONS

ANO acridine N-oxide

BiPO2 2, 2'-bipyridine N, N-dioxide

2, 4, 6-CNO 2, 4, 6-collidine N-oxide

CNPNO cyanopyridine N-oxide

DBNO di-text -buiyl nitroxide

DPNOQ 2, 3-di(2-pyridine N-oxide) quinoxaline

4-EtOPNO 4-ethoxypyridine N-oxide

2-EtPNO 2-ethylpyridine N-oxide
IQNO isoquinoline N-oxide
2,6-LNO 2,6-lutidine N-oxide
PicANO picolinic acid N-oxide
PicNO picoline N-oxide

PTNO 2-py:idmethiolate N-oxide

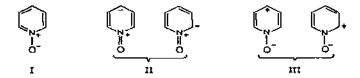
QNO quinoline N-oxide
TENO tricthylamine N-oxide
trimethylamine N-oxide

TMPNO 2, 2, 6, 6-tetramethylpsperidine nitroxide

TPNO tripropylamine N-oxide

A INTRODUCTION

Amine N-oxides act as electron-pair donors, forming molecular adducts and complexes with a variety of acceptor molecules, such as metal salts and complexes 1, 2, halogens 3, and organic compounds 4. Although complexes of pyndine N-oxides with HCl (ref. 5), SO₃ (ref. 6), BF₃ (ref. 7), iron carbonyl⁸, and uranium compounds 9, and a larger number of adducts between aliphatic amine N-oxides and various Lewis acids 10-15 were previously known, systematic synthetic and characterization studies of metal complexes of aromatic amine N-oxides were initiated 16-19 in 1961. During the last decade, a strong interest in the coordination chemistry of aromatic amine N-oxides was displayed by many research groups, and a large number of publications appeared in the literature. These studies were greatly encouraged by the ready availability of a variety of ligands of this type 20. Two reviews 1, 2 covering the subject appeared in this journal in 1968. Since then a significant number of important contributions has appeared in the literature. The present review is mainly concerned with the progress in the field of the coordination compounds of aromatic amine N-oxides to date. The metal complexes of aliphatic and non-aromatic heterocyclic amine N-oxides are also briefly covered.


B AROMATIC AMINE N-OXIDES

(1) Preparation and properties

Aromatic amine N-oxides are generally prepared in good yields by direct N-oxidation of the corresponding aromatic amine with an organic peracid, such as monoperphthalic acid, or hydrogen peroxide and glacial acetic acid $^{5,20-23}$. Other preparative methods involve cyclization reactions of compounds with aliphatic chains 20,21,24,25 N-Oxidation leads to significant alteration of the reactivity of the aromatic ring, owing to a reversal in the electron density distribution about the ring, in comparison with that observed in the corresponding amine $^{26-29}$ The N⁺-O⁻ group is strongly polarizable in both directions and can act either as an electron-attracting or as an electron-donating group, facilitating both electrophilic and nucleophilic substitutions 30 In contrast, electrophilic substitution is not facile in aromatic amines.

In aliphatic amine N-oxides the four atomic orbitals of the nitrogen atom are close to sp^3 , and have an approximately regular tetrahedral structure 20,31 . In aromatic amine N-oxides, however, the ione-pair electrons of the nitrogen, before formation of the N-O bond, are on the sp^2 orbital, so that the N-O bond is in the same plane as the aromatic ring, and the oxygen 2p π electrons interact directly with the π -electron system of the ring.

This leads to differences in the chemical properties of aliphatic and aromatic amine N-oxides 20 . The unsubstituted pyridine N-oxide involves nearly equal contributions 32 from canonical structures I, II and III.

The contributions of structural type II are demonstrated by X-ray data and dipole moment determinations. Thus, the N-O bond is significantly shorter in pyridine N-oxide (1 37 Å)³³ than in trimethylamine N-oxide (1 388 Å)³¹ or its hydrochloride (1 424 Å)³⁴. Contributions of structural type II are enhanced when electron-withdrawing substituents occupy ring positions¹. This is suggested by the increased double-bond character of N-O in compounds of this type (e.g. the N-O bond length in 4-nitropyridine N-oxide is 1.26 Å)³⁵. On the other hand, the fact that the difference in dipole moment between pyridine (2 22 debye) and pyridine N-oxide (4.24 debye) is considerably smaller than that between trimethylamine (0 65 debye) and trimethylamine N-oxide (5 02 debye) has been also attributed to the importance of the contributions of canonical structure II in the aromatic oxide³⁶

The organic chemistry of aromatic amine N-oxides has been repeatedly reviewed 20,21,30,37,38 The vapor ultraviolet spectra of pyridine N-oxide are characterized by a very intense band at 35,960 cm⁻¹ and a relatively less intense absorption at 29,291 cm⁻¹; these bands are, respectively due to the $\pi \to \pi^*$ and $n \to \pi^*$ transitions³⁹ At higher energies two additional bands are observed, and attributed to $\pi \to \pi^{++}$ and $n \to \pi^{++}$ transitions ³⁹. Similar vapor UV spectra have been reported for substituted pyridine N-oxides 40. In aprotic solvents, the $\pi \to \pi^*$ transition in aromatic amine N-oxides exhibits a red shift and a hyperchromic effect when compared to the same absorption in the corresponding aromatic amine. In hydroxylic solvents, on the other hand, the N-oxide $\pi \to \pi^*$ band shows a blue shift, which is mainly due to hydrogen bonding 41,42. The infrared spectra of aromatic amine N-oxides have been studied extensively $^{43-46}$. The bands of special interest to coordination chemists are: $\nu_{N=0}$, occurring at 1300–1200 cm⁻¹, $\delta_{N=0}$, occurring at 880–830 cm⁻¹, and CH out-of-plane deformations, which occur in the 900-650 cm⁻¹ region 47,48. These bands usually exhibit characteristic shifts upon metal complex formation 47,48 (vide infra) Proton NMR spectra of pyridine N-oxides in non-polar aprotic solvents exhibit chemical shifts in the order $\gamma H > \beta H > \alpha H$ from the higher magnetic field ^{20, 28, 49} The α - and γ -protons of the parent base undergo higher shifts than the β -protons upon N-oxidation ⁴⁹. This is due to an increase in the negativity of the nitrogen by N-oxidation, leading to a general decrease in the electron density of the aromatic ring; this decrease is most pronounced for the β -carbon atoms, which do not receive the electron-donating resonance contribution from the oxygen atom 20

(11) Substituent effects and correlations

As already mentioned, electron-withdrawing substituents enhance the contributions of

structural type II, contributions of canonical forms like III increase in the presence of electron-releasing ring substituents or with increasing size of the parent heterocycle 1,20,38. These effects are manifested by changes of various physical and chemical properties with variation of the substituent(s) on the aromatic ring. Many successful correlations of various properties of substituted aromatic N-oxides with the substituent Hammett sigma constants 50 or the hybrid set of parameters σ^+ (for strongly electron-releasing), σ^- (for strongly electron-withdrawing) and σ (for weakly electron-releasing or withdrawing substituents) 51 have been reported 1,38,50,52. 54.

The $\nu_{N=0}$ frequencies of substituted aromatic N-oxides correlate moderately well with the Hammett σ constants 38,43 ; correlations of $\nu_{N=0}$ with the σ^+ , σ^- and σ hybrid set of parameters are more successful 38,53 . In 1967 Nelson et al. introduced the σ_{PyNO} constants (Table i), which were derived from the acid dissociation constants of protonated substituted pyridine N-oxides 55 . Correlations of σ_{PyNO} with various properties of free and complexed (vide infra) substituted pyridine N-oxides are generally successful 1,55 .

TABLE 1

Opyno constants for substituted pyridine N-oxides 55

Substituent	Ligand pKgjq+	ФРУ NО
4-CH ₂ O-	2 05 4	-0 603
4-CH3-	1.29 b	-0 240
3-CH ₃ -	1 08 b	+0 139
н	0.79 b	٥
4-Ci	0 36 ^c	0 206
3-C1-	1 34 d	0 263
4-O ₂ N-	-1.7 b	1.19
4-HO-	2 36 b	-0 751
4-H ₂ N-	365€	-1 37
3-H ₂ N -	1 47 b	-0 325
4-HOOC-	-0 48 f	0 608
3-HOOC-	0 09 /	0 335
4-H3COOC-	-0.41 ^C	0 574
3-119C4OOC-	0 03 <i>b</i>	0 364
3.4-(CH ₃) ₂ -	101 <i>6</i>	-0 105
4-(CH ₃) ₂ N-	3 88 <i>a</i>	-1.48
4-С ₆ Н ₅ О~	2674	-0 574
4-CN-	-1 178	0 94

^a J N Gardner and A R Katritzky, J Chem. Soc., London, (1957) 4375

b A.R Katritzky and F.J Swinbourne, J Chem Soc., London, (1965) 6707.

Ref 54

d11 Grandberg, GK Faizova and AN. Kost, Khim Geterotsiki Soedin, 4 (1966) 561

^{*}H Hirayama and T Kubota, Yakugaku Zasuhi, 73 (1953) 140

f Ref. 32

⁸ R.G. Garvey and R. Scheele, results reported in ref. 55.

(m) Donor properties

The oxygen in N-oxides is basic and hence susceptible to electrophilic addition by metal ions, Lewis acids, protons, halogens and organic electron-pair acceptors 20 . It and 21 adducts of aromatic amine N-oxides with hydrogen halides have been reported; 2.1 adducts are also obtained with other morganic acids of the type HX (X = 21 , SbCl₆, PF₆, AsF₆, SbF₆, etc.) $^{56-58}$. The 1-1 adducts are of the normal type IV, while the 2:1 adducts have been formulated as involving hydrogen bonding (V); in fact, their IR spectra do not exhibit absorptions characteristic of free hydroxyl groups $^{56-58}$. An "abnormal" 1:2 Nal salt with 2-picoline N-oxide has also been prepared by Vozza 56 and assigned structure VI.

$$\begin{bmatrix} \begin{matrix} & & & & & & \\ & & & \\ & &$$

Amine N-oxides also form molecular adducts with alcohols and phenois through intermolecular hydrogen bonding. A number of 1-1, 2-1 and 1-2 adducts of various phenois with 4-nitropyridine N-oxide have been isolated in crystalline form 59. The infrared spectra of adducts of this type provide a measure of the donor strength of the N-oxide. In fact, the negative shift of the ν_{OH} mode of the alcohol or phenol, observed during adduct formation with a neutral ligand, is a function of the bonding formation enthalpy 60,61. Numerous studies of the properties of aprotic solvent (e.g. CCl4) solutions containing mixtures of aromatic N-oxides and alcohols or phenois have been reported 43, 53, 55, 62-65. Successful $\Delta \nu_{\rm OH}$ correlations with $\sigma_i \, \sigma^+$ and σ^- or $\sigma_{\rm PVNO}$ demonstrate that the σ -donor strength of aromatic N-oxides increases with increasing contributions of canonical forms III, i.e. with increasing electron-releasing character of the substituent, as would be expected 43,53,55,62 Figure 1 illustrates the $\Delta\nu_{OH}$ vs σ_{PyNO} plot for a series of adducts of substituted pyridine and quinoline N-oxides with phenois 53, 55,62. Linear ΔH^0 vs $\Delta\nu_{OH}$ plots were also reported for methanol adducts with pyridine N-oxides 65 Studies of the adducts between aromatic N-oxides and todine are also suggestive of an increase in the donor strength of the oxide with increasing electron-releasing ability of the substituent 3,66-68. A linear log $K_{\rm eq}$ vs $a_{\rm PyNO}$ plot, obtained for a series of 4-substituted pyridine N-oxides 67, is illustrated in Fig. 1. Recent studies of the molecular adducts between mono-N-oxides of aromatic diazines and iodine led to the conclusion that the N-O oxygen rather than the second ring nitrogen is the donor atom in these compounds 69.

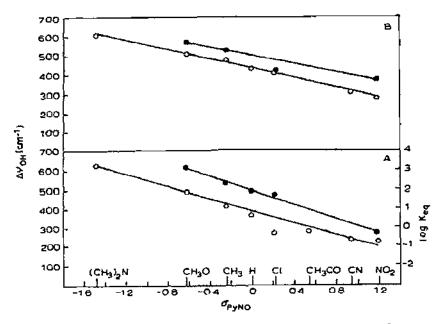


Fig. 1 Correlations of σ_{PyNO} (ref. 55) with (A), \circ , $\Delta\nu_{ON}$ trequencies for the interactions of 4-substituted pyridine N-oxides with p-methylphenol⁶², \bullet , $\log K_{eq}$ for the interactions of 4-substituted pyridine N-oxides with iodine⁶⁷, (B), \circ and \bullet , $\Delta\nu_{OH}$ frequencies for the interactions of 4- and 6- (respectively) substituted quinoline N-oxides with phenol⁶² $\Delta\nu_{OH}$ for 6-substituted quinoline N-oxides gives more satisfactory plots when correlated with the Hammett σ constants⁶²

C. METAL COMPLEXES OF MONO N-OXIDES OF AROMATIC AMINES

(1) Preparation of metal complexes and some reactions between N-oxides and metallic compounds

The majority of the metal complexes of aromatic amine N-oxides are decomposed by water. The methods employed for their preparation involve, therefore, interactions between ligand and metallic compound in non-aqueous solvents. In certain cases, organic dehydrating agents, such as triethyl orthoformate. To and 2,2-dimethoxypropane, have been utilized either for the dehydration of hydrated metal salts or even as interaction media. Crystalline metal complexes with N-oxides are usually rather easily obtained and a large number of compounds of this type are stable in the atmosphere. Descriptions of the various synthetic methods employed for the preparation of N-oxide complexes are, thus, considered unnecessary, special synthetic procedures or handling precautions required for certain metal complexes will be mentioned in the appropriate sections.

Synthetic procedures for mixed N-oxide— π -ligand PtII complexes of the general type (A)PtCl₂(L) (where A = alkene, alkyne, styrene, vinyl ester or CO and L = aromatic amine N-oxide)⁷²⁻⁷⁹ were described in detail in a previous review 2. Analogous PdII complexes are more difficult to isolate, owing to their lower stability, nevertheless, a series of

complexes of the type $[(C_2H_4)PdCl_2L]$ ($L = C_5H_5NO$ and substituted derivatives) was obtained by interaction of $[(C_2H_4)PdCl_2]_2$ with an aromatic N-oxide in dichloromethane, under an ethylene blanket at low temperatures 80 .

In certain cases, the aromatic N-oxides react with labile metallic compounds. Thus, when V^{III} salts interact with excess N-oxide, either in the presence of air or under inert conditions, part of the ligand $^{81-83}$ may exidize V^{3+} to VO^{2+} Reactions of $V(ClO_4)_3$ with various pyndine N-oxides, under inert conditions, resulted in the formation of N-oxide complexes of the V^{III} salt, contaminated with major or minor amounts of $VO(ClO_4)_2$ ·N-oxide complexes 82 Pure $VO(ClO_4)_2 \cdot 5C_5H_5NO$ was prepared from VCl_3 , C_5H_5NO and $LiClO_4$ in ethanol in the presence of atmospheric oxygen 81 On the other hand, $VO(NCS)_2 \cdot nC_5H_5NO$ (n=4, 5) and $VO(NCS)_2 \cdot 4(4-CH_3C_5H_4NO)$ were obtained by reaction of $V(NCS)_3$ and aromatic N-oxide, under inert conditions 83 The following redox reaction was proposed for these interactions 83 , where Z=H, CH_3

$$V(Z-C_5H_4NO)_n(NCS)_3 \to VO(Z-C_5H_4NO)_{n-1}(NCS)_2 + \{Z-C_5H_4N + SCN\}$$
 (1)

Redox reactions of the above type have been widely utilized for the deoxygenation of aromatic N-oxides, for synthetic purposes 20 Reactions of aromatic N-oxides with P^{III} halides in organic solvents lead to the formation of the corresponding amines and P^{V} oxohalides; the reactions most probably involve formation of a PX_3-N -oxide adduct as an intermediate 84

$$C_5H_5NO + PCl_3 \rightarrow [C_5H_5NO \cdot PCl_3] \rightarrow C_5H_5N + POCl_3$$
 (2)

Other reducing agents, reportedly deoxygenating N-oxides, are ferrous salts 85, sodium hydrosulfite or sulfite, NaBH4 + AlCl3 (ref. 86), NO (ref. 59), Fe or Zn powder in acetic acid 87 or alkaline media 59 sulfur (in liquid ammonia), sulfur compounds 88 (e.g. mercapto compounds, thiourea, S2Cl2, C6H5SCl), etc. Sulfur dioxide, which reportedly forms a 1 1 adduct with trimethylamine N-oxide 10, 13 can reduce atomatic N-oxides only under certain reaction conditions 89 Mixtures of triphenylphosphine and an aromatic amine Noxide react at 230°C, yielding triphenylphosphine oxide and the corresponding aromatic amine 90 Neutral phosphite esters are not very effective deoxygenating agents for Noxides 84, however, the reaction goes to completion when triethyl phosphite is used in combination with a peroxide and oxygen 91. Reaction of aromatic N-oxides and N, Ndioxides with PCl₅, POCl₃ or KCN leads to deoxygenation of the amine oxide and simultaneous insertion of halogen or CN groups at the 2- or 4- ring position 92-94. Intermediates of the types L. PCl₅ (ref. 92) and (L)P(O)Cl₂ (ref. 93) (L = amine N-oxide) have been proposed for N-oxide reactions with PCl₅ and POCl₃ respectively. Pyridine N-oxide reacts with CaHaMgBr in tetrahydrofuran to yield 1-hydroxy-2-phenyl-1, 2-dihydropyridine, the quinoline analogican be obtained by a similar reaction at low temperatures, but at higher temperatures 2-phenylquinoline N-oxide derivatives are the main reaction products⁹⁵

Aromatic amine N-oxides can generally displace π -ligands from their metal complexes. Thus, in addition to the displacement of ethylene in Pt^{II} (refs 2, 72–79) and Pd^{II} (ref. 80) complexes, reaction of pyridine N-oxide (PNO) with iron tetracarbonyl in benzene, leads to the formation of $\{Fe(PNO)_6\}$ $\{Fe_4(CO)_{13}\}$, iron is in the +2 oxidation state in the

cationic PNO complex⁸. Substitution reactions of halopentacarbonylrhenium(I) complexes with PNO yield $Re(CO)_3(PNO)_2 \times (X = CI, Br, I)$, while tricarbonyl(cycloheptatriene)molybdenium produces $Mo(CO)_3(PNO)_3$ when allowed to interact with PNO⁹⁶. Finally, metallations of the aromatic ring of N-oxides have also been reported reaction of PNO with Hg^{II} acetate in glacial acetic acid yields 97 4-Cl HgC_5H_4NO , and reaction of 4-chloro-3-methylpyridine N-oxide with n-butyllithium results in the insertion of Li at the 6-position of the aromatic ring, via an N-oxide— Bu^nLi adduct intermediate 98 .

(ii) Generalines

Monodentate "oxo-l-quids" ⁹⁹ of the general type R_nZO (where Z is a Group VA element N. P. As, etc.) coordinate invariably through the oxygen to metal ions ^{16–18},47,48,100–102. Only in the case of metal complexes of organonitroxide free radicals has the possibility of interaction of an unoccupied orbital of the metallic compound with the three π -electron fragments N. O been advanced ¹⁰³, however, infrared evidence is generally in favor of coordination of the latter ligands through the N—O oxygen ^{104–107}. The nitrogen atom in tertiary amine N-oxides is devoid of a lone pair, in fact, the lone electron pair of nitrogen in tertiary amines is used for bonding to the oxygen atom during N-oxidation, i.e.

$$\frac{1}{2}N + O \qquad \frac{1}{2}NO \tag{3}$$

Hence, the only site available for coordination in tertiary amine N-oxides is the oxygen atom

The aromatic rings of PNO, quinoline N-oxide (QNO) and isoquinoline N-oxide (IQNO) do not introduce severe steric hindrance during formation of cationic metal complexes 16-18.53.81.82, 108-121 Thus, complexes of the types $[ML_6]^{n+}$ (n=2 or 3) (refs. 16-18, 53, 82, 108, 110-112, 117-120) and [MOL₅]²⁺ (refs 81, 114, 115) are formed during interactions of these ligands with most 3d metal perchlorates, tetrafluoroborates and, in certain cases in the presence of excess ligand, nitrates Copper(II) generally forms [CuL₄]²⁺ cationic complexes with aromatic N-oxides, and only in the cases of PNO and 4-methylpyridine N-oxide were $[CuL_K]^{2+}$ complexes also isolated 17, 122. Although the maximum possible coordination numbers for complexes of 3d metal ions with monodentate ligands are usually attained in cationic 3d metal complexes with PNO, QNO or IQNO, the effective symmetries of these $[ML_6]^{n+}$ and $[CuL_4]^{2+}$ complexes are lower than O_h or D_{4h} , respectively ¹²³ (vide infra) This is due to the non-linearity of the N-O-M bond sequence, a necessary requirement of the electronic distribution about the oxygen atom 123 Examination of the two extreme cases of tetrahedral sp³ (for a purely single N=0 bond) $^{1.124}$ and trigonal planar sp^2 (for a double N=O bond) disposition of oxygen lone pairs in the metal complexes of aromatic amine N-oxides, shows 1 that the M-O-N bond angle should lie somewhere between 108° and 120° X-ray crystal structure determinations of various cationic and neutral aromatic amine N-oxide metal complexes has established 125-134 that the M-O-N bond angle lies between 108° and 134°. Comparison of the cationic 3d metal complexes of unsubstituted pyridine and quinoline N-oxides with those reported for R₃ZO (R = alkyl, aryl, dialkylamino group, Z = Group VA element) 100, 102, 135-140

clearly shows the greater steric hindrance introduced during coordination of the latter ligands. In fact, R_3ZO ligands usually form 4.1 complexes with divalent 3d metal perchlorates $^{100,102,135-139}$, complexes of the type $\{M(R_3ZO)_5\}^{2+}$ have been reported 140 for $R = CH_3$ and Z = P. The highest possible coordination numbers are, nevertheless, not always attained in PNO metal complexes, for instance, Y^{III} and Ln^{III} ions form $\{M(PNO)_8\}^{3+}$ cationic complexes 113 . Higher coordination numbers have been reported for several cationic complexes of these metal ions with other monodentate ligands (e.g. certain sulfoxides yield $\{YL_9\}^{3+}$ and $\{LnL_9\}^{3+}$ complexes 141)

The presence of 3- or 4-substituents in the aromatic ring of PNO and 4- or 6-substituents in that of QNO does not introduce steric interference at the coordination site, thus, $[ML_6]^{n+}$ complexes of ligands of these types with a variety of 3d metal ions have been reported 48,53,82,108 117-119 4-Ethoxypyridine N-oxide (4-EtOPNO) forms [M(4-EtOPNO)₅]²⁺ with certain metal (Mn, Co, Ni, Zn) perchlorates 142, but [M(4-EtOPNO)₆]²⁺ complexes were obtained during interactions of an excess of this ligand with Coll and Nill nitrates 143 Steric effects become obvious in 2-substituted and 2,6-disubstituted pyridine N-oxides 2-Picoline N-oxide (2-PicNO) forms [Co(2-PicNO)₅]-(ClO₄)₂, involving a trigonal bipyramidal complex cation ^{123, 133}, and 4-1 complexes with Ni^{II} nitrate and perchlorate 144 However, the 2-ethylpyridine N-oxide (2-EtPNO) yields a hexacoordinated cationic Nill complex, under the same experimental conditions 144, QNO, which corresponds to a 2,3-disubstituted pyridine N-oxide, behaves in a similar way, as already mentioned 2,6-Lutidine N-oxide (2,6-LNQ) forms 4 1 complexes with divalent 3d metal perchlorates (M = Mn to Zn) 145 These ligands (2-PicNO, 2-EtPNO, 2,6-LNO) were, on the other hand, also found to yield 6.1 complexes with the same 3d metal perchlorates, when different synthetic procedures were employed 146. The [Co(2,6-LNO)₅]²⁺ cation has been shown to exist in solutions of [Co(2,6-LNO)₄](ClO₄)₂, containing excess ligand ^{145, 147} and in nitromethane solutions ¹⁴⁶ of [Co(2,6-LNO)₆](ClO₄)₂·2H₂O. 2-, 3- and 4-cyanopyridine N-oxides generally form ¹⁴⁸ 6 1 complexes with Coll and Nill perchlorates and 2 1 complexes with AgClO₄. The above examples suggest that substituents at the 2- and 6- positions of the PNO ring, although introducing sufficient steric interference as to cause the stabilization of lower than hexacoordinated cationic complexes with 3d metal ions, do not provide a severe enough steric hindrance to impede the formation of the corresponding 6-1 complexes, the stoichiometry of the complexes obtained with these ligands depends on the synthetic method utilized. Finally, acridine N-oxide (ANO), corresponding to a 2, 3, 5, 6-tetrasubstituted pyridine N-oxide, forms complexes of the type [M(ANO)₄(OH₂)₂](ClO₄)₂·xH₂O (M = Co, N₁, Zn)¹⁴⁹ Trivalent 3d metal ions (i.e. Cr³⁺, Fe³⁺) yield [ML₆]³⁺ complexes with 2- and 2,6-substituted pyridine N-oxides and ANO 145, 146, 149.

The steric effects of substituents on the aromatic ring of N-oxides are also evidenced by the influence they exert on various properties of mixed N-oxide—anionic or neutral ligand metal complexes. Thus, adducts of the type $T_1F_4 \cdot 2L$ (or, more generally, $MX_4 \cdot 2L$, X = halide ion) with non-bulky or sterically hindered ligands, such as pyridine N-oxides, are normally cis-octahedral $^{150-153}$. The trans-octahedral isomers are stabilized only when there is sufficient steric interaction to overcome symmetry effects and the tendency to maximize F-to-Ti $p_{\pi} - d_{\pi}$ bonding, 19 F NMR studies of adducts of this type with various pyridine N-oxides suggest that the cis isomer is the predominant species when L = PNO,

2-PicNO, 2-EtPNO, 2,4-LNO and 3,5-LNO, however, in the case of TiF₄ • 2(2,6-LNO), stabilization of the cis isomer is sterically hindered, and the trans complex is formed exclusively ¹⁵³.

Bis- $(\beta$ -ketoenolato) Co^{II}, Ni^{II} and Cu^{II} chelates form isolable 1.2 and/or 1 1 adducts with aromatic amine N-oxides 154 — 157 Proton NMR contact and pseudocontact shift studies of these adducts in solution have established many cases of steric interference of the ring substituents of aromatic amine N-oxides. Thus, the meta-substituent in 3-PicNO interferes with the Co(2,4-pentanedionato)₂ (Co(AA)₂) ring system (but, presumably not with the corresponding Ni(AA)₂ system), restricting the rotation of the pyridine ring 154 . The steric influence of the methyl substituents of 2,6-LNO in adducts with M(AA)₂ is suggested by the fact that no proton is allowed to spend much of its time at apogee or perigee (in a rotamer, having the plane of the pyridine ring perpendicular to that of the β -ketoenolato ring, the protons at apogee and perigee with respect to the metal were, respectively, defined as at 0° and 180° internal rotation), similar effects were not observed for the corresponding adducts of any of the less sterically hindered picoline N-oxides, moreover, 2,6-LNO apparently forms only the 1 1 adduct with M(AA)₂ (M = Co, Ni) 154 QNO, corresponding to a 2,3-disabstituted pyridine N-oxide, also forms only 1 1 adducts with M(AA)₂, whereas IQNO, a 3,4-analog, forms 2 1 adducts with these metal chelates 155

Steric effects may also influence the mode of coordination of polyanions with coordinating ability in aromatic amine N-oxide metal complexes. Thus, divalent 3d metal nitrates generally form neutral 1 2 complexes with these ligands when stoichiometric amounts of salt and ligand are allowed to interact 16, 18, 110, 143, 144, 158, 159 Complexes of this type (the exception being the Cu^{II} compound) with PNO and 4-substituted derivatives are hexacoordinated, involving two chelating nitrato groups, as indicated by spectral and magnetic evidence 16,18,110,143,144 [Co(2,6-LNO)₂(NO₃)₂] and its 2,4,6-collidine N-oxide (2,4,6-CNO) analog were assigned similar structures 158. However, more recent studies of $[M(2,6-LNO)_2(NO_3)_2]$ (M = Mn, Co, Ni, Zn) complexes led to the conclusion that these compounds are pentacoordinated, involving one mono- and one bidentate nitrato ligand 159 In fact, the electronic spectra and magnetic moments of these complexes are suggestive 159 of pentacoordinated configurations 123, 142, 145, 146, 160. On the other hand, the presence of two types of coordinated nitrate (mono- and bi-dentate) is demonstrated by the occurrence 159 of four bands (combination vibrational modes of the nitrato groups 161, 162) at 1800-1700 cm⁻¹, compounds involving one type of coordinated nitrate exhibit only two bands in this region 161, 162 Formation of complexes of this type with 2,6-LNO is apparently due to steric interference between the methyl ring substituents and the nitrato ligands 159.

In a series of papers Muto et al. discussed the effects of aromatic ring substituents on the properties of 1 i complexes between N-oxides and Cu^{II} halides $^{163-166}$. Compounds of this type are binuclear, N-oxide-bridged, and exhibit subnormal and temperature-dependent paramagnetism 167 , they have been the subject of extensive studies, which will be discussed in a later section. Spin—spin coupling in compounds of this type primarily occurs by means of a super-exchange interaction between the Cu^{II} ions of the dimer, through the bridging oxygen atoms of the N-oxide ligands $^{168-170}$. Primarily, Muto et al. found the following. Although substituent Hammett σ constants do not correlate with the observed (d-d) band positions or magnetic moments in the complexes, a fairly linear

plot of the $\bar{\nu}_{\rm max}$ (kK) of the (d-d) band vs $\mu_{\rm eff}$ is obtained. Increasing spin-spin interaction and occurrence of the Cu²⁺ (d-d) transition at higher energies are generally observed with increasing steric hindrance of the N-oxide ligand. Thus for example, $\mu_{\rm eff}$ and the wavelengths of the (d-d) band maximum increase along the series 2,6-LNO < 2-PicNO < 3-PicNO < 4-PicNO. These trends, which are illustrated in Table 2, suggest that in Cu^{II}-N-oxide binuclear complexes, the steric factor is more important in determining the extent of the magnetic interaction, or the (d-d) transition energy, than the electronic effect $^{163-166}$. The importance of the substituent(s) electronic effects is evident in monomeric N-oxide-metal complexes, in complexes of this type a variety of successful correlations of substituent sigma constants to various physicochemical properties (including linear $\bar{\nu}_{\rm max}$ of the (d-d) band in $[{\rm CuL}_4]({\rm ClO}_4)_2$ vs σ plots 166) have been reported, and will be detailed in the next section

Mixed N-oxide—anionic or neutral ligand metal complexes can be obtained in a variety of metal to N-oxide ratios. Specifically, studies of equilibria in the system $Cr(ClO_4)_3$ — $HClO_4-H_2O-PNO$ revealed that the complete series of species, typically $[Cr(OH_2)_{6-n}]$. (PNO)_n $^{3+}$, where n=0-6 inclusive, are formed 171 . For n=2, 3 or 4 both cis and trans isomers were obtained with separation achieved by ion-exchange techniques 171 . The widest variety of metal to N-oxide ratios has been reported for metal halide complexes. The stoichiometries of the complexes obtained with these salts depend on the synthetic procedure utilized, complexes involving high metal to N-oxide ratios have also been ob-

TABLE 2 Effects of substituents on the aromatic ring on the magnetic moments and the (d-d) transition maxima in 1.1 CuCl₂—aromatic amine N-oxide complexes $^{163-166}$

Ligand	λ_{max}	μ _{eff} (25°C)	
_ 0	(nm)	(B M)	
3-CIPNO	820	0 46	
3-HOOCPNO	885	0 54	
3-H ₅ C ₂ OOCPNO	825	0 48	
4-H ₅ C ₂ OOCPNO	830	0 50	
3-CH ₃ COPNO	900	O 57	
4-NO ₂ PNO	1100	1 20	
4-CNPNO	805	0 96	
3-HOPNO	795	0.37	
4-HOPNO	4	0 33	
2-EtPNO	763	0 32	
3-EtPNO	810	0 46	
4-EtPNO	820	0 59	
2,4-LNO	765	0 37	
2-CH2OH • PNO	800	0 39	
3-CH2OH - PNO	813	0 50	
4-CH ₂ OH - PNO	818	0 53	
QNO	733	0.33	
4-MeQNO	750	0 40	
IQNO	810	0 51	

Oot reported

tained ^{172, 173} by thermal elimination of N-oxide or aquo groups from richer (in N-oxide ligands) or hydrated metal halide complexes. A few illustrate examples of certain metal halide—aromatic amine N-oxide (L) complexes of various stoichiometries are cited here (X = halide ligand). $MCl_4 \cdot nL$ (n = 1, M = Te (ref. 174), n = 2, M = Hf, Th., Te., Sn (refs. 174–176); n = 3, M = Zr, Pt (ref. 175)), MCl_3 nL (n = 2, M = Fe (refs. 177, 178), n = 3, M = Fe, Ru (refs. 177, 179), n = 5, M = Rh (ref. 179)), $MX_2 \cdot nL$ ($n = \frac{1}{2}$, M = Mn, Ni (ref. 172), n = 1, M = Mn, Co, Ni, Cu, Zn, Cd, Hg, Sn (refs. 16, 167, 172, 173, 180–183), n = 2, M = Mn, Co, Ni, Pd, Cu, Zn, Cd, Sn (refs. 16, 18, 142, 167, 172, 173, 180, 183, 184), n = 3, M = Co (ref. 16), n = 4, M = Ni, Cu (refs. 18, 185), n = 5, M = Ni (ref. 172), n = 6, M = Ni (refs. 18, 172)), $M_3X_6L_2$ (M = Cu, Cd) (refs. 180, 186), $M_4X_8L_2$ (M = Cu, Cd) (refs. 180, 186). It should be noted that, in addition to the two latter types of complex, many of the $MX_2 \cdot nL$ compounds involving high M to L ratios are bi- or polynuclear

(ui) Infrared spectra

Coordination of aromatic amine N-oxides through the N-O oxygen is manifested by characteristic shifts of various ligand IR bands. In metal complexes of pyridine N-oxide and its substituted derivatives, $\nu_{N=0}$ generally occurs at lower frequency than in the free ligand 47,48. Coordination of pyridine N-oxides with metal ions results in a drain of electron density from the oxygen to the metal, this leads to an increase of the energy mismatch between the oxygen and nitrogen p orbitals and, consequently, a decrease of the contribution of the oxygen orbitals in the π system of the aromatic ring⁵³. The N=O bend is thus weakened to some extent, this effect gives rise to negative ν_{N-O} frequency shifts 48, 53, 111 On the other hand, kinematic coupling 111 and, in the case of transition metal ions, metal-to-ligand $d_{\pi}-p_{\pi}$ back-bonding would tend to produce positive ν_{N-O} frequency shifts. In metal complexes with pyridine N-oxides the former effect obviously overrides the latter effects, since negative $v_{N=0}$ shifts are invariably observed. Metal complaxes of isoquinoline and acridine N-oxides also exhibit negative v_{N-0} shifts 117, 149. However, in 3d metal complexes with quinoline N-oxides and 4-substituted derivatives, $v_{\rm N-O}$ is found either at the same frequency as in the free ligand or even slightly shifted towards higher frequencies 117,119 . This is mainly due to the "impurity" of ν_{N-Q} in quinoline N-oxides 119, in fact, $\nu_{N=0}$ is coupled with vibrations of the quinoline ring in these compounds 187 . Nevertheless, extensive metal-to-ligand π -bonding may also be contributing to this effect 117 , in fact, metal ions with no d electrons available for $d_{\pi}-p_{\pi}$ back-donation (e.g. TiO^{2+} , ZrO^{2+} , Th^{4+}), form QNO complexes, exhibiting large negative v_{N-Q} shifts ¹²¹ Transition metal complexes of 6-substituted quinoline N-oxides show negative shifts 118 of the bands assigned as ν_{N-0} . Typical examples, illustrating the shifts of $\nu_{N=0}$ and other IR bands of aromatic amine N-oxide metal complexes, are given in Table 3. $v_{N=0}$ splittings in $\{ML_6\}^{n+}$ and $[CuL_4]^{2+}$ complexes with pyridine N-oxides have been interpreted in terms of ligand-field symmetries lower than O_h and D_{4h} , respectively 123 (cf Sect C(vii))

Other ligand IR bands, undergoing shifts upon metal complex formation, are $\delta_{\rm N-O}$ and the CH out-of-plane deformation modes 47,48,176 (Table 3). The $\delta_{\rm N-O}$ mode occurring at 880–830 cm⁻¹ in the free ligands shows small negative or positive frequency shifts in PNO metal complexes 47,48 ; larger and invariably positive $\delta_{\rm N-O}$ shifts are observed in

Regions of PN-O. 5N-O. 7CH and M-O (cm-1) vibrations an cationic aromatic amine N-oxide metal complexes (Nigol mult specifia) TABLE 3

Compound	Σ	0-N4	0-N ₉	7CH	OW4	Ref.
PNO		1243	842	932, 777 4		47
[M(FNO) ₆](ClO ₄) ₃	Al, Cr, Fe	1224-1206	849-839	936~932	442-385	47,48
				776774	402-325	•
[M(PNO) ₆](CIO ₄) ₂	Mn, Fe, Co, Nı,	1226-1217	839-836	924-919	368-311	47,48
	Cu, Zn			778-776		
2-PicNO		1242	850	157 B		123
N1 (2-PicNO)4 (CIO4)2		1194	IJ	762	380, 359	144, 193
[Co(2-PicNO) ₅](CiO ₄) ₂		1208, 1196	بة	780	365	123, 193
[Cu(2-PicNO)4](Ci04)2		1202	u	Û	420	146
2,6-LNO		1245	844	762 b		145
[Cr(2,6-LNO) ₆](ClO ₄) ₃		1188	v	770	485	145, 193
[Mn(2,6-LNO)4(OCIO ₃)}(CIO ₄)		1203	v	772	338	145, 193
(M(2,6-LNO)4)(CIO4)2	Fe, Co, Nr, Cu, Zn	1212-1190 <i>d</i>	v	781765	456- 372 d	145, 193
(terraccordinated)						
Ni (2, 6-LNO)4 (CiO ₄) ₂ (pentacoordinated)		1186	ಲ	775	407, 390, 370	146, 193
ON?		1229	788	U		117~119
Fe(QNO) ₆ [(ClO ₄) ₃		1230	o	Ü	363	119
[M(QNO) ₆](ClO ₄) ₂	Ma, Co, Ni, Zn	1230-1224	804-797	ů,	388-349	117, 119
ONO		1182	813	ú		117
[M(IQNO) ₆](CIO ₄) ₂	Co, Ni	1160-1159	834-829	Ü	IJ	117
ONA		1332	Ü	Ü		149
M(AND)4(CIO4)2 - rH2O c	Co, N, Zn	1326-1323	Ü	IJ	368-366	149

d viob and ν_{11} modes (KBr spectra), these lands occur at 877 and 758 cm⁻¹, respectively, in CS₂ solution^{47,48}. Other yCH PNO bands ν_{5} , 965, ν_{172} , 944, ν_{104} , 816 cm⁻¹ (in CS₂) ⁴⁸
by 11 (ref 43),
c Not reported
d One or two bands,
e x = 3 or 6

QNO and IQNO metal complexes 117,118 The CH out-of-plane deformation bands ($\gamma_{\rm CH}$) are generally shifted towards higher frequencies upon metal complex formation 47,48,176 . These positive shifts are due 188 to a decrease in the electron density of the ring, resulting from the coordination of the ligand to a metal ion 48 . Absorptions attributable to characteristic vibrations of substituents on the aromatic ring may also be shifted in N-oxide metal complexes. Thus, $\nu_{C=O}$ in 3- and 4-acetyl-substituted pyridine N-oxides is shifted towards higher frequencies in the metal complexes of these ligands 48 . These shifts are larger for the 4- than for the 3-substituted ligand, this is consistent with the much greater influence of the increased (through coordination to metal ions) electron-attracting property of the NO group on the electron density at the 4- (and 2-) ring position relative to the 3-position, in fact, complex formation results in an inhibition of resonance structures II of the ligand 48

Metai-ligand ($\nu_{M=0}$) vibrational modes occur^{47,48,53}, 108, 111, 119, 146, 180–182, 189–193 in the low-frequency IR region, at 500–200 cm⁻¹ $\nu_{\rm M=O}$ for a given metal ion and N-oxide ligand decreases with increasing coordination number (e.g. $\nu_{\rm M=O}$ occurs ¹⁰⁸ at 366 cm⁻¹ in $[Cu(PNO)_6]^{2+}$ and as a doublet at 417 and 385 cm⁻¹ in $[Cu(PNO)_4]^{2+}$) (cf. Table 3) Metal halide complexes exhibit the metal—halogen stretching vibrations in the same frequency region, these bands are generally diagnostic of the stereochemistry of these complexes (see, for example, ref. 194). Conclusions concerning the nature of the bridging ligand in bi- or polynuclear N-oxide metal halide complexes can be drawn from the splitting of the ν_{M-O} or ν_{M-X} bands 180-182, 189, 195, 196. Raman spectra lead, of course, to more decisive conclusions 197, especially when the nature of the bridging ligand (i.e. N-oxide or halogen) cannot be unambiguously established from IR spectra alone. For instance, dimeric N-oxide complexes of the type $HgLX_2$, for which both N-oxide oxygen-181 and halogen-180, 195 bridged structures were proposed by different groups on the basis of low-frequency IR spectra, have been recently assigned a halogen-bridged structure on the basis of a combined IR—Raman study ¹⁹⁷) Finally, N-oxide metal complexes involving coordinated polyanions show bands attributable to the metal—polyanion stretching vibrations in the low-frequency IR region (e.g. ν_{M-O} (perchlorato 193, nitrato or sulfato 159,198), $\nu_{\rm M-N}$ or $\nu_{\rm M-S}$ (thiocyanato 159,199) etc.), splittings of the fundamental vibrational modes of the ionic polyanions are also observed in the IR spectra of complexes of this type

The frequencies of various IR bands of free and coordinated aromatic amine N-oxides are influenced by the inductive effects of substituents on the aromatic ring ν_{N-O} vs σ plots are linear for 4-substituted pyridine N-oxides 53, 55, 108, as already mentioned Successful correlations of ν_{N-O} with σ constants have also been reported for the complexes of 4-substituted pyridine N-oxides with several metal ions 53, 108, 190, 191, 200, 201. Metal ions reportedly showing linear ν_{N-O} vs. σ plots for their 4-substituted pyridine N-oxide complexes are Mn^{II} to Zn^{II} (refs. 53, 108), Ti^{IV} (ref. 190), Zr^{IV} (ref. 191), UO₂²⁺ (ref. 200), and organo-tin(IV) and -lead(IV) ions 201. Characteristic plots of this type are illustrated in Fig. 2 and Table 4. Nevertheless, in pyridine N-oxide complexes with other metal ions, ν_{N-O} was found insensitive to substituent variations 82. 108, 202–205, (Table 4), metal ions showing this trind are variadium ions (V^{III}, V^{IV}, VO²⁺) (refs. 82, 202, 203), Cr^{III}, Fe^{III} (refs. 108, 205), Sn⁴⁺ (refs. 203, 204) ν_{N-O} is also rather insensitive to substituent variations in TiCl₄ complexes with pyridine N-oxides 203, but the corresponding

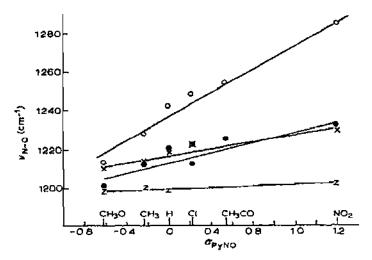


Fig 2 Correlations of apyNO (ref 55) with PN=O frequencies of 4-substituted pyridine N-oxides and their metal complexes. o, free 4-Z-PNO (ref 53), •, [Ni(4-Z-PNO)₆](ClO₄)₂ (ref 53), ×, Ti(4-Z-PNO)₂F₄ (ref 190), Z, V(4-Z-PNO)₂F₄ (ref 192)

TiF₄ complexes produced a linear $\nu_{N-\Omega}$ vs σ plot ¹⁹⁰. In (A)PtCl₂(L) (A = alkene or CO, L = PNO and derivatives) complexes, v_{N-O} is sensitive to the inductive effects of substituents on the aromatic ring^{2,77}. The $\nu_{C=C}$ or $\nu_{C=O}$ modes of the π -ligand are virtually insensitive to these effects^{2,73,79} Trans-axial coordination (relative to the vanadyl oxygen) of one aromatic amine N-oxide ligand to the VIV ion in bis-(\beta-ketoenolato) oxovanadium(IV) chelates results in negative shifts of the V=O stretching vibrational mode $^{206-268}$ $\Delta
u_{V=O}$ (i.e. $v_{V=0}$ (in the original pentacoordinated chelate) minus $v_{V=0}$ (in the hexacoordinated N-oxide adduct)) was quite successfully correlated to 4-substituent opyno constants, in addition, linear plots of $\Delta v_{V=0}$ vs $-\Delta H$ (reaction enthalpy) and $-\Delta H$ vs. a_{PvNO} were reported ²⁰⁶⁻²⁰⁸. In analogous uranyl complexes the U-O (uranyl or β-ketoenolato) vibrations are insensitive to the effects of 4-substituents on the pyridine ring 209 , but $\nu_{\rm N=0}$ in UO22+ complexes with aromatic N-oxides is, generally, sensitive to these effects 209, 210 For cationic complexes of the unsubstituted pyridine N-oxide with 3d metal ions a linear $\nu_{\rm N=O}$ vs. $\nu_{\rm M=O}$ plot was reported, for divalent $3d^{5-10}$ metal ions (Mn^{II} to Zn^{II}) the order of increase of ν_{N-O} (or ν_{M-O}) follows the usual pattern of increasing ligand-field stabilities for this series ¹¹¹ In the quinoline N-oxide series, no correlations of ν_{N-O} to σ constants or other parameters have been generally attempted, in view of the "impurity" of this IR band (vide supra) 187.

 $\nu_{\rm M-O}$ bands in aromatic amine N-oxide metal complexes are generally sensitive to the inductive effects of ring substituents, furthermore, they are inherently more sensitive than $\nu_{\rm N-O}$ to metal-to-ligand (or ligand-to-metal) π -bonding ¹⁹² Linear $\nu_{\rm M-O}$ vs σ plots for 4-substituted pyridine N-oxide complexes with metal ions with no d electrons available for back-donation (i.e. ${\rm Tr}^{4+}$, ${\rm Zr}^{4+}$) or d^1 systems (V⁴⁺) were reported ^{190–192}; $\nu_{\rm M-O}$ in complexes of this type increases with increasing electron-releasing property of the substituent ^{190–192} (Fig. 3) No correlation was, however, found in similar plots of the cor-

Effects of substituents on the M. O and M. O frequencies (cnt-1) of some substituted aromatic amine Moxide metal complexes TABLE 4

	7	[CrL ₆](CiO ₄) ₃ "	a_	CoLe](CID4)2 =	,	(NiLe] (CIO4)2 a	ø
		0-14	√Cr-0	0-N4	0-02,	0-24	0-1N ^d
4-Z-PNO	CII3O	1198	340	1201	282 422-410 <i>b</i>	1201	299 ^c 422–410 b
	CI	1200	445	1207	392, 384	1206	393
	•			1227, 1205 b		1212	325 c
						1222, 1212,	
						2071	
	×	1199	428, 405	1217	340, 330	1218	340, 328
		1215, 1200 b		1220, 1215,		1220	337 c
				1200 4		1210 %	
	ច	1199	481, 460	1220	362, 355	1220	367, 355
						1222-1212	374 c
	NO2			1237	367,354	1239	370, 360
	ı			1220 b		1230±3	374 c
0NO-2-4	CH3O	1294	441 6	1289 4	416 b	1287 €	403 b
ı	CI3	1217	443 b	1206 °		1206	382 b
	_ #			1229 ¢		1229 €	350 h
	ס	1304, 1263	456 b	1302 °, 1251 °		1302, 1251	387 b
	NO2	1302	4 SO b	1300 €		1300 €	368 h
ONO Z-9	CH ₃ 0					$1213,1180^f$	
	CH3					1205, 1170 f	
	្ខ					1267, 1223 f	
	Š					1300, 1265 f	

a Data from ref 108 unless otherwise indicated b Ref 119 C Ref. 53 d Ref 123 d Ref. 117 I Ref. 118

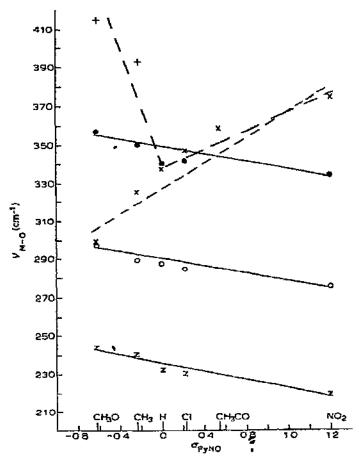


Fig 3 Correlations of σ_{PVNO} (ref 55) with $\nu_{M=O}$ frequencies of 4-substituted pyriding N-oxide metal complexes (——) o, Ti(4-Z-PNO)₂F₄ (ref 190), •, V(4-Z-PNO)₂F₄ (ref 192), Z, Zr(4-Z-PNO)₂F₄ (ref 191) (———) X, [Ni(4-Z-PNO)₆] (ClO₄)₂, linear trend, reported by Herlocker et al. (————), V-shaped trend for the same series of Ni^{II} complexes, obtained by using the $\nu_{M=O}$ assignments (+) made by Whyman et al. for the 4-PiCNO complex 108, and by Nathan and Ragsdale for the 4-MeOPNO complex 119.

responding TiF_4 complexes with 4-substituted quinoline N-oxides; this was attributed to strong coupling 204 . Herlocker et al. reported linear ν_{N_1-O} vs. σ plots for $\{NiL_6\}(CiO_4)_2$ complexes with 4-substituted pyridine N-oxides 53 (Fig. 3). In these complexes ν_{N_1-O} increases with increasing electron-withdrawing ability of the substituent, owing to Ni-toligand back-donation. This was attributed to an increase in the energy of the ligand π^* orbital with decreasing electron-withdrawing character of the substituent. Thus, although the σ -bond initially formed between nickel ion and ligand becomes stronger with 4-substituent variation along the series $NO_2 < COCH_3 < Cl < H < CH_3 < OCH_3$, the overall strength of the Ni-O bond increases in the reverse order, owing to increased nickel-to-

digand π -bonding with decreasing energy of the π^{\bullet} orbital 53. Whyman et al. found similar linear trends in vot. O vs. o plots for the corresponding Crill, Feltl and Coll complexes; however, the values for the 4-methyl-substituted ligand were always high 108. More recently, Nathan and Ragsdale obtained V-shaped var o plots for Crill, MnII, FeIII and Znff perchlorate complexes with 4-substituted quinoline. V-oxides 119. A reexamination of the low-frequency IR spectra of 4-methoxypyridine N-oxide-Co^{II}, Ni^{II} and -Zn^{II} perchlorate complexes revealed that two bands having all the characteristics of $\nu_{\rm MCO}$ occur at 300 280 and 422 410 cm 1 (ref. 119). The lower frequency bands have been assigned as $\nu_{\rm M}$ O during earlier studies 53, 108, assignment of $\nu_{\rm M}$ O at 422 410 cm would lead to V-shaped plots 119 (Fig. 3). V-shaped trends of this type were interpreted in terms of combination of two competing effects, i.e. for election-releasing substituents, the basicity of the ligand is the factor determining the M. O bond strength, while for electron-withdrawing substituents the n-bonding effect is predominant 119. More recently similar V-shaped trends were reported for FeCl3 and Fe(ClO4)3 complexes with 4-substituted pyridine N-oxides, moreover, the assignment of $\nu_{\rm he+O}$ in the FeCl₃+2L complex with 4-methoxypyridine N-oxide at 440 cm⁻¹ appears to be unambiguous, as no band with the characteristics of $v_{\rm be}$ 0 was observed at 350-290 cm⁻¹ in this complex ²⁰⁵. Also, $v_{\rm MCO}$ vs. σ correlations could not be made for SnF₄ + 21, complexes with 4-substituted pyridine and quinoline A'-oxides, as well as TiF4 + 21, complexes with the quinoline N-oxide series 204 . In the case of SnF₄ complexes, the change of $\nu_{\rm Sn=O}$ with substituent variation was attributed to back-donation from SnW to ligand, increasing with the increase of the electron-withdrawing ability of the substituent, and counterbalancing the signainteraction to reduce the $\nu_{\rm Sn-O}$ range 204 . Thus, both Zn^{II} (ref. 119) and Sn^{IV} (ref. 204), which have filled outer d-shells, appear to be non mert to metal-to-ligand back-bonding Michelson et al. comment also on the possible ambiguity of cis or trans stereochemical assignments on the basis of IR evidence alone 204 (see also ref. 211). A characteristic example for atomatic amine N-oxide complexes is provided by the case of (CH₃)₂SnX₂-(PNO)₂ (X = halogen) complexes. IR evidence seems to point to circ configurations ²¹², but the crystal structure determination of (CH₃)₂SnCl₂(PNO)₂ established the location of all pairs of identical ligands in trans positions [3]

(iv) Electronic spectra

Hexacoordinated first-row transition metal complexes with PNO and substituted derivatives exhibit electronic spectra, which may be conveniently divided into three regions 213 (1) 45,000 -29,000 cm $^{-1}$, (2) 29,000 cm $^{-1}$, and (3) 21,000 -5,000 cm $^{-1}$. Region 1 contains the π - π^{0} and π - π^{0} transitions of the ligand (vide supra). High-spin PNO complexes with 3d metal ions exhibit the π - π^{0} transition at lower energies than in the free ligand (Table 5) 213 . 4-Nitropyridine N-oxide analogs show a shift of the π - π^{0} band towards higher energies 213 . These trends concern solid-state spectra, in acctonitiale solution the GV spectra of these complexes were identical to those of the free ligand, with the exception of Cr^{HI} complexes, in the latter case the kinetic stability of the d^{3} chromium ion precludes dissociation during the course of the measurement 213 . The dissociation of aromatic amine N-oxide metal complexes in various solvents (acctonitiale, nitromethane etc.) has also been pointed out by Herlocker et al. 53 . Acctonitiale solution spectra

TABLE 5

Diffuse reflectance spectra of pyridine N-oxides and their metal complexes in the ultraviolet region 213

Compound	υ a	
	(kK)	
PNO	39 4, 30 3 h	
[Cr(PNO) ₆](ClO ₄) ₃	38 6	
[Fe(PNO) ₆](ClO ₄) ₅	38 5 (29 15)	
{Fe(PNO) ₆ }(CIO ₄) ₂	18 1	
[Co(PNO) ₆](CIO ₄) ₂	18 3 (29 75)	
[Cu(PSO)6](ClO4)2	38 9	
$[Zn(PNO)_6](CIO_4)_2$	38 5 (32 25)	
1N(4-PicNO) ₆ 1(ClO ₄) ₂	38 8 (31 25)	
4-NO ₂ PNO	42 4, 30 5 C	
[1 e(4 NO ₂ PNO) ₆](ClO ₄) ₂	43.7, 30 d5 €	
[N(4-NO ₂ PNO) ₆](ClO ₄) ₂	44 25, 31 0 4	
$[Cu(4)NO_2PNO)_4](ClO_4)_2$	424, 31 05 5	

⁴ Shoulders in parentheses

of PNO and QNO complexes with TiO^{2+} , ZtO^{2+} , Th^{4+} and UO_2^{-2+} perchlorates exhibit $\pi^-\pi^+$ transition shifts towards higher energies 114,126,121 . The ligand $n^-\pi^+$ transition is not observed in the UV spectra of aromatic N-oxide metal complexes 144,116,121,213 , bands observed in certain 3d metal complexes with PNO at 33,000–29,000 cm⁻¹ (Table 5) are unlikely to be due to this transition, which should be of high energy in metal complexes 213

Region 2 in octahedral 3d metal ion complexes contains low-lying charge-transfer bands and, for certain metal ions (e.g. Cr3+, Ni2+), higher energy (d-d) bands 213. Carlin, in one of the earlier studies of transition metal perchlorate complexes with PNO, pointed out the unusual yellow color of the Mn^{II} complex and ascribed it to the presence of a low-lying charge-transfer band ¹⁷. The onset of the charge transfer for the series of $[ML_6]^{n*}$ (M - Cr^{3*} , Mn^{2*} , Fe^{3*} , Co^{2*} , Nr^{2*} and Cu^{2*}) and $[CuL_4]^{2*}$ complexes was observed ¹⁷ at 3875 5000 A. Lever and co-workers discussed the charge-transfer spectra of divalent 3d metal complexes with pyridine N-oxides in detail 213, 214. With PNO the chargetransfer band moves to higher energy in the sequence $Mn^{H} \le Nt^{H} = Fe^{H} = Co^{H} \le Cu^{H}$; the fact that the species most difficult to oxidize (Cult) lies at highest energy suggests that the charge transfer is from metal to ligand 213. Introduction of electron-withdrawing substituents (NO_2 , COO etc.) at the 2- or 4- ring positions results in considerable shifts of the charge-transfer bands towards lower energies, thus, an increase in the acceptor ability of the ligand leads to a decrease in the energy of the charge-transfer band, as would be expected for metal-to-ligand charge transfer 213. In picolinic acid N-oxide divalent 3d metal chelates the energy of the charge-transfer band increases 215 along the series Fe¹¹ < Co¹¹ < Ni¹¹ < Mn¹¹ < Cu¹¹ In the cases of Cr¹¹¹ and Fe¹¹¹ complexes, shoulders observed on the rising absorption of the UV band were not assigned by Lever and co-workers 213. In high-

bn no transition

CThe hand at 30. 31 kK is associated with the nitro group.

spin complexes, the lowest energy metal-to-ligand charge transfer was assigned as follows: $t_{2g} + \pi^*$ for $d^4 \cdot d^3$ and $d^6 - d^8$ systems; and $c_g + \pi^*$ for d^4 , d^5 and d^9 systems 213 . Rationalization of the data was made by using, for the first time, the optical electronegativity approach for the elucidation of metal-to-ligand charge-transfer spectra 213 . This method had been successfully used by Jørgensen et al. for the explanation of the ligand-to-metal electron-transfer spectra of metal hexa- and tetra-halides 216 . Selected optical electronegativity data for divalent 3d metal complexes with aromatic amine N-oxides are shown in Table 6. The energy of the metal-to-ligand charge-transfer band, corrected for changes in spin-pairing energy is given by

$$\nu_{\text{CT}}^{\bullet} = 30,000 \left(\chi_{\text{opt}}(M) - \chi_{\text{opt}}(L) \right) \tag{4}$$

and

$$\nu_{CT}^{\bullet} = \nu_{CT} - \Delta SPE + nDq \tag{5}$$

where $\chi_{\rm opt}(M)$ and $\chi_{\rm opt}(L)$ are the optical electronegativities of the metal ion (in the stereochemical environment of interest) and the ligand, respectively, ΔSPE is the change in spin-pairing energy from the ground state to the excited state; n=6 for $c_g \to \pi^*$ transitions and n=-4 for $t_{2g} \to \pi^*$ transitions, and Dq is the ligand-field parameter ²¹³. The charge-transfer bands in aromatic amine N-oxide metal complexes were, therefore, assigned as $t_{2g} \to \pi^*$ transitions for FeII, CoII and NiII and as $e_g \to \pi^*$ transitions for MnII and CuII complexes ²¹³. (cf. Table 6). It should be noted that a pure O_h symmetry was assumed for the hexacoordinated N-oxide complexes for the purposes of these studies ²¹³, although these compounds are not octahedral ¹²³ (with infra)

Region 3 contains exclusively crystal-field (d-d) bands. Earlier reports on electronic spectra of cationic 3d metal complexes with aromatic N-oxides and determinations of ligand-field parameters 17, 110, 217, 218 were based on solution spectra. However, aromatic amine N-oxide metal complexes are dissociated in solution 53, 213, as already mentioned; thus, reliable data can be obtained by spectral measurements either in the solid state (reflectance or mull spectra) or in solutions containing excess N-oxide ligand. Room-temperature solid-state electronic spectra of [ML,]" complexes with aromatic N-oxides exhibit, in certain cases, splitting of the (d/d) bands 108, at low temperatures (-196°) this splitting is resolved in two distinct peaks, in addition, other (d-d) bands are split in the lowtemperature spectra 123 (Table 7). This splitting is indicative of the presence of lower symmetry components in the ligand field 123 (cf. Sect. C(vii)). Table 7 shows the electronic spectra of a number of hexa-, penta- and tetracoordinated complexes of 3d metal perchlorates with aromatic amine N-oxides. Band assignment and calculations of ligand-field parameters given in Table 8 for hexacoordinated complexes of this type were generally based on the assumption that these cationic complexes are purely O_h . Caution must be exercised in assigning the higher energy $(d \cdot d)$ hands, since they may overlap with the charge-transfer hand in this region

Reedijk ¹¹¹ calculated the ligand-field parameters for hexakis-PNO cationic 3d metal complexes from low-energy (d-d) bands (see ref. 219). Comparison of the Dq values of PNO with those of H_2O and dimethyl sulfoxide (DMSO) towards octahedral divalent 3d

TABLE 6

Optical electronegativity data for some octalicedral aromatic amine Noxide metal complexes (metal-to-ligand charge transfer) 213

Complex	B 4 (cm ⁻¹)	∆SPE b (cm ⁻¹)	Dq (cm -1)	CFSE c (cm ¹)	"CT (tm-1)	ν. (cm ⁻¹)	(7) idox	Xopt (M)
Mn(PicANO)2.2H2O [Mn(PNO)6](ClO4)2	835 835	15,590	850 850	-5100 -5100	24,700 24,330 22,570th	14,220 13,840 12,080	80	23
Mn(4-NO ₂ PNO) ₂ Cl ₂ ^d	835	15,590	820	-5100	21,800 19,800sh	11,810 9,310	60 60	233
Fe(PicANO)2 · 2H2O	800	-14,930	1020	4080	21,000	31,850	8.0	1.9
[Fe(PNO) ₆](ClO ₄) ₂	800	-14,930	890	3560	25,250 22,620th	36,620 33,990	0.8 0.85	2 0 1 95
Co(PicAND)2 · 2ll2O	770	-10,780	1030	4120	23,800	30,460	80	1.8
{Co(PNO) ₆ }(CIO ₄) ₂	750	-10,500	910	3640	25,450 22,900sh	32,310 29,760	0.8 0.85	19 185
Co(PNO)2(NO3)2d	150	-10,500	910	3640	27,700	34,560	0.7	19
Ni(PicANO)2 · 2H2O	900	-8,400	935	3740	24,400	29,060	90	18
[Ni(PNO)6](CIO4)3	960	-8,960	810	3240	25,200 22,800sh	30,920 28,520	0.77 0.85	18 1.8
Cu (PicANO)2 · 2H2O	1000	-4,670	1200	-7200	26,600	38,470	8,0	1.1
[Cu(PNO) ₆](CiO ₄) ₂	1000	-4,670	1250	-7500	27,400	39,570	0.8	2.1
[Cr(PNO)4](ClO4)2 °	1000	-4,670	1470	-8820	26,700 22,950sh	40,180 36,430	800	2.1 2.0

a Rach parameter of interelectronic repulsion b ASPE values are as follows. Mn^{II}, + \frac{3}{3}D, Co^{II}, -2D, Ni^{II}, -\frac{4}{3}D, Cu^{II}, -\frac{4}D, Cu^I

 $[^]c$ CFSE values are + 6 Dq for Mn^{II} and Cu^{II}, and -4Dq for Fe^{II}, Co^{II} and Ni^{II} d Bridging N-oxide ligand c Square planar.

TABLE.

[Rections specify of work Moneta perchlorate complexes with accounts among Assistant

	**************************************	(A violated as violation of the	
י:עלני)	Link flumber	(1.1)	, J
POSTENDIA (CO)	÷	15 € 17 (4.5) + 17 (4.1) 23 23 17 (4.1) + 2 (4.0)	**
CHPON ICOON	٠	15 15 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.
•	,	1154,1765,232,332,11	1:3
INDICACOLONIA	**	18.2.1° 18. 18. 18. 19. 19. 20. 20. 10. 11. 18. 18. 18. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	6.1
		34 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		19:15.41 4.5.4031	
11 ce > 0, r > 01, le 104 15	4	المراجع المراج	12.1
11 c (C) (C) (C) (C) (C)	J	12 0 12 12 4 4 1 18 (C) 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.1. 1
		13 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ft oif VO. ht 1041;	ۍ	43 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1:34
•		20 14 14 14 14 14 14 14 14 14 14 14 14 14	
		office on final taken	23
[Nith Pr: NO1, [10:104.15]	4	8 3 6 4 4 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1
		14 51 2 2 603 + 7 16 (1) 14 6, 26 2 (14 1, 16) + 4 1, (7)	
		- 15 PL R (1.56.7. 0 6.7. 15 c.)	13.1
[CurPNOs le 10a)	ت	46.12.2014 - 7127.30	1.18
		2 18:2.3:01	
Heart Parion protest	•	11 (12 R.15 x 196 2x 7	<u></u>
Nr2,61 S014(OO4);	٠	10 (3 %) (4 %) (4 %)	:C
140.5 HOVE 16.04.13	•		**:
	-•	13.4 2.	144
10001 6 USO1 4 1000 13	-	P. 19 19 19 19 19 19 19 19 19 19 19 19 19	**
1000 1 100 1 100 1	~	0 K - 5 K - 5 K	14.5
(CutFNO), (COO))		13, 14, 3, 3, 1	104
•			

d Sol districtions and an all species, at room to specially solves because visital.

Fig. despecies manyments for besonding and completes were to deby assumed a part by symmetry for the elimptes causes.

Fig. despecies manyments for besonding and completes were to deby assumed a part by symmetry for the elimptes causes.

TABLE 8 Ligand-field parameters for $\{ML_6\}(ClO_4)_n$ complexes with aromatic amine N-oxides

Metal ion	Ligand	<i>Dq</i> (cm ⁻¹)	βØ	Ref.	
Ct ₃₊	4-MeOPNO	1613	0 76	108	
	4-PicNO	1600	0 75	108	
	PNO	1587	0 77	108	
	4-CIPNO	1575	0 71	108	
	2,6-LNO	1686		145	
	4-MeOQNO	1600	0 73	119	
	4-MeQNO	1558	0 72	119	
	QNO	1618	0 83	119	
	4-CIQNO	1562	0 80	119	
	4-NO ₂ QNO	1575		119	
	ANO	1590		149	
Mn ²⁺	4-MeOQNO	710	0 76	119	
	4-MeQNO	747	0.78	119	
	QNO	703	0 77	119	
	4-CIQNO	690	0 78	119	
Fe ²⁺	PNO	930		111	
Fe ³⁺	QNO	1373		119	
Ĉo ^{2†}	4-MeOPNO	950	0 88	108	
	2-PicNO	657	0 96	146	
	3-PicNO	898 5	0 82	146	
	4-PicNO	950	0.88	108	
		906	0 8 <i>5</i>	146	
	2-EtPNO	657	0 955	146	
	PNO	950	0 88	108	
		890	080	111	
	4-CIPNO	950	0 88	108	
	4-NO ₂ PNO	940	0 89	108	
	2-CNPNO	996	080	148	
	3-CNPNO	1010	0 94	148	
	4-CNPNO	986	0 80	148	
	4-MeOQNO	835	0 94	117	
	4-MeQNO	971	0 94	117	
	QNO	976	0 97	117	
	IQNO	979	0 94	117	
	4-CIQNO 4-NO₂ QNO	955 965	0 93 0 98	117 117	
Ni ²⁺	4-MeOPNO	800	0 98		
144 <u>-</u>	2-PicNO	780	0 98	53 146	
	3-PicNO	800	0 933	146	
	4-PicNO	7 94	096	53	
	T-110/10	833	0 90	108	
	PNO	794	097	53	
	11-0	826	091	108	
		820	081	111	

TABLE 8 (continued)

Metal 100	Ligand	<i>Dq</i> (cm ⁻¹)	βα	Ref
Nı ²⁺	2-EtPNO	780	0 935	146
	4-CIPNO	786	0 92	53
		823	0 93	108
	4-NO ₂ PNO	830		53
	_	823	0 95	108
	4-CH ₃ COPNO	784	0 83	53
	2-CNPNO	808	0.87	148
	3-CNPNO	826	0 B9	148
	4-CNPNO	813	0 82	148
	4-McOQNO	835	0 94	117
	6-MeOQNO	813	989	118
	4-MeQNO	826	0 79	117
	6-MeQNO	80 9	0.88	118
	QNO	790	0 84	117
	IQNO	805	0 83	117
	4-CIQNO	842	0 89	117
	6-CIQNO b	785	0 84	118
	6-BrQNO	811	0.79	118
	4-NO ₂ QNO	874	0.78	117
	6-NO ₂ QNO	824	0 87	118
Cu ²⁺	PNO	1220		111

 $[\]beta = B \text{ (complex)}/B \text{ (gaseous ion)}$

metal ions produces the spectrochemical series ^{111, 127} DMSO < PNO < H₂O, although $\nu_{\rm M-O}$ values indicate that DMSO is a generally stronger ligand than PNO ²²⁰ Dq values towards octahedral CrIII are suggestive of the spectrochemical series ^{108, 221} DMSO \simeq PNO < H₂O. The nephelauxetic series for CoII and NiII has the sequence ¹¹¹ PNO < DMSO < H₂O. Unsubstituted aromatic amine N-oxides compare as follows ^{53, 108, 111, 117–119, 149} in the spectrochemical series towards O_h CrIII PNO \simeq ANO < QNO, towards O_h CoII PNO < QNO < IQNO, and towards O_h NiII PNO \simeq QNO < IQNO 4-Substituted pyridine N-oxides exhibit a trend of decrease of Dq towards O_h CrIII, CoII or NiII with decreasing σ -donor strength of the ligand (i.e. increasing electron-withdrawing ability of the substituent) ^{53, 108} However, 4-NO₂-PNO shows the highest Dq value ⁵³ towards NiII. In the quinoline N-oxide series, introduction of 4- or 6-substituents in the aromatic ring results in generally higher Dq values towards O_h CoII and NiII relative to those reported for the corresponding 4-substituted pyridine N-oxides ^{117, 118}. One explanation advanced involves consideration of a lowering of the quinoline N-oxide's π^* orbitals relative to those in pyridine N-oxides, so that there would be more metal-to-ligand back-bonding in the complexes of the former ligands ¹¹⁷ Dq (for O_h NiII) vs σ plots for 4- and 6-substituted quinoline N-oxides show a V-shaped trend ^{117, 118}, however, the 4-chloro- and 4-nitroquinoline N-oxides exhibit lower Dq values towards O_h CoIII than QNO ¹¹⁷, while Dq towards O_h CrIII for 4-substituted quinoline N-oxides increases along the series ¹¹⁹ 4-CH₃ < 4-Cl < 4-NO₂

b Tetrafluoroborate complex

< 4-CH₃O < 4-H. The effects of the same substituent at different ring positions have been reported for cyano-substituted pyridine N-oxides: Dq towards O_h Co^{II} or Ni^{II} and ν_{CO-O} or ν_{Ni+O} are generally highest for the 3-cyano derivative, increasing in the order 4-CN < 2-CN < 3-CN with the exception of the Dq towards O_h Ni^{II} , which gives the series ¹⁴⁸ 2-CN < 4-CN < 3-CN. Analogous data for 2-, 3- and 4-alkyl-substituted pyridine N-oxides are not available. 2,6-LNO exhibits a higher Dq value towards O_h Cr^{III} than any monodentate pyridine N-oxide ligand studied thus far ¹⁴⁵, this value is lower than those reported for trimethylamine N-oxide (TMNO) ¹⁰⁰ and the chelating agent picolinic acid N-oxide (PicANO) ²¹⁵. The spectrochemical series towards O_h Cr^{III} for the latter two ligands and a number of aromatic amine N-oxides is: 4-CH₃-QNO < 4-CH-QNO < 4-NO₂-QNO \simeq 4-CI-PNO < PNO < ANO < 4-CH₃O-QNO \simeq 4-CH₃-PNO < 4-CH₃O-PNO < QNO < 2,6-LNO < TMNO (Dq = 1740 cm⁻¹) < PicANO (Dq = 1755 cm⁻¹) ¹⁰⁰, 108, 119, 145, 149, 215

Electronic spectra have also been reported for a variety of other hexa-, penta- and tetra-coordinated neutral and cationic complexes with aromatic amine N-oxides (L) e.g. $VCl_4 + 2L$ (ref. 222), $VOX_2 + nL$ (X = Cl, Br, NCS, ClO_4 , n = 4 or 5). FeCl $_3 + nL$ (n = 2, 3). FeCl $_3 + nL$ (n = 2, 3)

(v) Magnetic properties

Cupric halide complexes with aromatic amine N-oxides have been the subject of extensive magnetic and structural studies, which were recently summarized by Watson 167 (cf. Table 9 for examples). Binuclear complexes of the types $[Cul.X_2]_2$ and $[Cul._2X_2]_2$ (L. $\stackrel{?}{=}$ aromatic amine N-oxide, X = Cl, Br) almost invariably exhibit subnormal and temperaturedependent magnetic moments [Cu₃Cl₆(2-PicNO)₃(OH₂)₃]_n also shows subnormal paramagnetism. These compounds normally contain bridging N-oxide ligands and their demagnetization has been generally attributed to spin spin coupling occurring via a superexchange mechanism operating through the orbitals of the bridging oxygen atoms (refs 129, 163 170, 186, 228 239) Refined X-ray structural data favor a σ mechanism for this interaction 125. The magnetic susceptibility of the Cu^{II} ions in these by or polynuclear complexes can be fitted to an equation which is derived from a simple scalar interaction of the form $2I_{H}S_{i} \cdot S_{i}$. For a binuclear complex the exchange energy I is the separation between the singlet and triplet states generated by the scalar interaction. The interaction is usually antiferromagnetic and the ground state is the singlet 237. The temperature dependence of the paramagnetism of complexes of these types was established during a number of studies 169, 186, 229, 230, 236, 237; $\mu_{\rm eff}$ is generally subnormal in the 80-450°K region, for example 230, $\mu_{\rm eff}$ (B.M.) for [Cu(PNO)Cl₂]₂ = 0.16 at 140°K, 0.62 at 293°K, 1.01 at 448°K, and for [Cu(PNO)₂Cl₂]₂ = 0.32 at 263°K, 0.52 at 307°K, 0.82 at 395°K. The triplet state was found to be appreciably populated at temperatures below 195°K, in most cases 169. The magnetic properties of these Cull complexes were suggestive of bi- or polynuclear structures, involving bridging Noxide ligands, a series of crystal structure determinations established that this is indeed the case $^{125, 127, 129, 240-243}$. Structures VII and VIII (L = aromatic amine N-oxide; X = halogen)

have been respectively established for binuclear 1:1 and 1 2 cupric halide complexes with aromatic amine N-oxides ^{125, 129, 241–243}. A more recent refinement of the crystal structure of [Cu(PNO)Cl₂]₂ led to the conclusion that the complex consists of oxygen-bridged dimers VII held together by weak chloride bridges ²⁴⁰. However, ³⁵Cl NQR studies of this complex suggest that chloride bridging between adjacent dimers does not occur ^{244, 245} It should also be noted that Hyde et all obtained a better fit of magnetic susceptibility and EPR data for this complex by assuming the presence of small amounts of the monomeric Cu(PNO)Cl₂ species in their samples ²³⁵. [Cu₃Cl₆ (2-PicNO)₂(OH₂)₂]_n consists of an infinite chain of 1-1 dimers (structure VII) joined by chloride bridges to Cu^{II} ions with distorted octahedral geometry ¹²⁷

The majority of $CuX_2 \cdot L$ complexes with aromatic N-oxides (X = halide ion), as well as their 1 I adducts with other ligands (e.g. H_2O , DMSO, N,N-dimethyl formamide) are magnetically subnormal $^{163-167,\,228,\,229,\,234}$. A number of chloro- or nitro-substituted quinoline and methylquinoline N-oxides form magnetically normal 1 I complexes with Cu^{II} halides $^{186,\,233,\,246,\,247}$ (e.g. $[Cu(4-NO_2-QNO)Cl_2]_2$ with μ_{eff} (B M) = 1.98 at 4.2°K, and 2.08 at 299°K (ref. 247), however. The magnetic behavior of the latter complexes was attributed to halide-bridged dimeric structures by Hatfield and co-workers 186 , while. Muto and Jonassen assumed oxygen-bridged structures for these complexes and interpreted their normal paramagnetism in terms of the electron-withdrawing effect of the nitro or chloro substituent on the bridging oxygens 233 .

2 1 N-oxide—cupric halide complexes are, in most cases, monomenic and magnetically normal (Table 9). However, the PNO complexes of this type are binuclear (structure VIII) ^{241, 243}, while for the 4-PicNO analogs, two isomers have been isolated a yellow oxygen-bridged dimer, VIII ²⁴², and a green trans monomer ¹⁶⁷. The magnetic moments of the above binuclear complexes are subnormal (Table 9). The PNO and QNO 2:1 complexes with Cu^{II} nitrate are also binuclear, with a structure similar to VIII (X = -ONO₂ in this case), involving a tetragonal pyramidal symmetry ¹²⁶. These complexes are, nevertheless, magnetically normal ^{16, 168, 230} (Table 9). Recent magnetic susceptibility and EPR studies of [Cu(PNO)₂(ONO₂)₂]₂ suggest that this compound represents the first authenticated example of exchange-coupled Cu^{II} ions with a triplet ground state ²⁴⁸. The exchange coupling is a σ -orbital mechanism which is transmitted through the orbitals of the bridging oxygen atoms by electron transfer plus intraatomic direct exchange ²⁴⁸ (see also ref. 249). Finally, EPR studies of mixed metal ion dimeric complexes of structural types VII and VIII (where the one metal ion is Cu^{II} and the other is Zn^{II}, Ni^{II}, Cd^{II}, Pb^{III} or Ba^{II}) have also been reported ^{250,251}.

The magnetic properties of aromatic amine N-oxide complexes with the halides of other 3d metal ions are generally normal for high-spin configurations and the stereochem-

TABLE 9

Types of copper(II) halide complexes with aromatic amine N-oxides a

Compound	Petf (B.M.)	Ref
	- summeries in the same	. w
1 1 complexes		
{Cv(PNO)Cl ₂ } ₂	0.59~1.06	16, 167, 168, 228
[Cu(QNO)Cl ₂] ₂	0 0 36	168, 228, 230
(Cu (4-NO ₂ PNO) Br ₂ ₂	0.45 - 1.77	129, 164
{Cu(3-NO ₂ -6McQNO) Br ₂] ₂	1 72	186
Adducts of 1-1 complexes		
[Cu(PNO)(DMF)Cl ₂] ₂ b	0.53	228
(Cu(PNO)(DMSO) Biz) 2 b	1 12	228
2.1 dimeric complexes		
[Cu(PNO)2Cl2]2	046-063	129, 230
[Cu(4-PicNO) ₂ Hr ₂] ₂	1 33	229
[0.1.7.1.2.7.2.7.2.7.2.7.2.7.2.7.2.7.2.7.2	,	
Trans 2 1 monomers		
{Cu(2-PicNO) ₂ Cl ₂ }	1 95	167
[Cu(2,6-LNO)2Cl2]	1.90	129
{Cu (QNO) ₂ Cl ₂ }	1 88	230
Distorted cis 2.1 monomers		
[Cu(2,6/LNO)2Cl ₂]	ı 9t	186
2 1 CuBr ₂ monomers		
[Cu(2,6-LNO)2Bt2]	2 04	129
[Cu(QNO)2Br2]	1 96	230
Adducts of 2.1 monomers		
$\{Cu(4-NO_2PNO)_2(OH_2)_2CI_2\}$	1 96	230
Polynuciear complexes		
[Cu ₃ Cl ₆ (2·PicNO) ₂ (OH ₂) ₂] _π	1 22	167
[Cu3Cl6(4-ClQNO)2]	2 07	186
[Cu4Cla(3-NO2-6-McQNO)3]	1 91	186

⁴ See ref. 167 for a complete Table.

istry of each complex. However, a number of Mn^{II} complexes of the type MnLCl₂ show low $\mu_{\rm eff}$ (5.40–5.60 B M) for this metal ion, these compounds are bi- or polynuclear and, most probably, chlorine-bridged ¹⁸². {Col₆}²⁺ cationic complexes with N-oxides show magnetic moments ^{3,23} of 4.70–4.80 B M. These moments are low for purely O_R configurations and suggest a loss in orbital degeneracy of the ground state (${}^4T_{1g}$), caused by lower-

b DMF = N, N-dimethyl formamide, DMSO = dimethylsulfoxide

symmetry components in the ligand field 123. Noll analogs exhibit moments of 3.30 B.M. or slightly higher, these are also indicative of the presence of distortion from an octahedral environment 123 . The paramagnetism of complexes involving $[ML_n]^{n*}$ $(M = Cr^{3*}, Mn^{2*},$ Fe2+, Fe1+, Cu2+) or [Cu1 x12+ cations is normal for high spin configurations (Co(2-PicNO), (COO₂), shows a moment (4.58 B.M. at 20°C) consistent with a high-spin trigonal bipy ramidal configuration 123. The violet [Ni(2,6-LNO)4](ClO4)5 complex is spin paired (diamagnetic) and isomorphous with its Cull analog, both these compounds involve square planar MO4 moieties 145. The corresponding Coll and Fell complexes also appear to involve square planar MO₄ moieties ^{145, 193}, the Fell complex exhibits a halfquenched spin (S = 1) $\mu_{eff} = 5.88$ B M.), while the Coll compound is of the spin-free ($\mu_{eff} = 4.73$ B M.) type ^{14.6}. High spin, square planar Coll complexes are unusual, in addition to the above compound high-spin Coll complexes with 1,2-his (mercapto)-ocarborane 252 and orhydroxyary) aldehydes or ketones 253 were also characterized as square-planar in recent years. Furthermore, it has been pointed out that a donor set of four oxygens might produce a ligand field of intensity insufficient to induce spin-pairing in planar Co^{ll} compounds ²⁵⁴, orbital contributions leading to moments higher than 4.70 B.M. can be explained if the energy order $d_{xx}, d_{xy} > d_{yx}$, which gives a 4E_x ground state. is assumed 254. Paramagnetic yellow or green complexes of the type Nil 4(ClO₄), (1 PiCNO or 2.6 ENO, $\mu_{\rm eff} = 3.16$ and 2.83 BM, respectively 144,146) are penta-(ref. 193). or hexa- (refs. 144, 146) coordinated, a monomeric structure, involving coordinated perchlorato ligands 146, and be or polynuclear structures, involving N-oxide-bridged complex polycations 144, 193 have both been proposed for compounds of this type

(vi) Other properties

(a) Conductances

Conductivity measurements in suitable solvents (e.g. intromethane, nitrobenzene, acetonifule) are, in most cases, in agreement with structures suggested by other data. Thus, many metal halide. Noxide complexes in high metal-to-ligand ratios appear from their other properties to be neutral, and behave, in fact, as non-electrolytes in solution 16, 18 In the case of Fe¹¹¹ complexes, FeCl3 • 2PNO exhibits low-frequency IR and Raman bands typical of the tetrachloroferrate(III) amon, and was formulated as [Fe(PNO)_Cls[]]FeCla[]. this complex behaves as a 1-1 electrolyte in solution 15th FeClar 3PNO, on the other hand, is a non-electrolyte in solution, does not exhibit bands attributable to the presence of [FeCla] and was formulated \$77 as [Fe(PNO)2Cla]. Cationic complexes of the type $[ML_n][X]_m$ (X \(^1\)CIO₄, BF₄, n = 4, 5 or 6, m = 2, 3) show conductances consistent with their formulations 16 18, 123, 145. [Mn(2,6-LNO)(OCIO3)](CIO4) behaves as a 1-2 electrolyte in nitromethane, however, although the presence of coordinated perchlorato groups as quite obvious from IR studies, the conductance of this complex is suggestive of dissociation in solution 145. On the other hand, certain metal nitrate complexes of the type [ML] (NO₃), (M = Ni^{II}, Cr^{III}, Fe^{III}), showing IR evidence favoring the exclusive presence of ionic nitrate, behave as 1/1 electrolytes in nitromethane 144, 149, this behavior has been interpreted in terms of displacement of N-oxide by nitrato ligands in solution 144.

(b) NMR spectra

¹⁹ F NMR studies have been used extensively for characterization of $T_1F_4 \cdot 2L$ and $T_1F_4(L)(L')$ (L = aromatic amine N-oxide, L' = dimethylacetamide or tetramethylurea) complexes ^{150, 152, 153, 204, 255–259}. These studies were covered in a previous review ¹. Distinction between the *cis*-IX and *trans*-X isomers

in complexes of this type can be based on ^{19}F NMR spectra 153,258,259 Satisfactory correlations of σ_{PyNO} with the chemical shifts of F_a and F_b were reported for a series of cis-TiF₄ • 2L complexes with 4-substituted pyridine N-oxides 152 Chemical shifts for F_a fluorines are much less sensitive to 4-substituent variation than those for F_b fluorines 258 In SnF₄ • 2L analogs with 4-substituted pyridine and quinoline N-oxides, the ^{19}F NMR chemical shifts do not appear to be sensitive to substituent variation 204

Proton NMR spectroscopy has also been employed in various studies of N-oxide complexes Kluiber, Horrocks et al. (see also Sect. C(n)) interpreted the contact shifts of the ligand protons, in mixed N-oxide-β-ketoenolato complexes of paramagnetic metal ions (Coll, Ni^{II}, Cu^{II}), in terms of spin delocalization from metal to N-oxide via a π mechanism 154-156, 260. For complexes with pyridine N-oxides it was impossible to distinguish whether the spin was delocalized in the highest filled π -bonding or the lowest empty π antibonding orbital of the N-oxide, because of the spin distribution similarity in these two orbitals 154 In the case of the quinoline N-oxide complexes, correlations of experimental data and spin density distribution suggest that the spin is delocalized in the highest filled π-bonding molecular orbital 155 Recently, Perry et al reported ¹H NMR contact shift studies in [M(4-PicNO)₆](ClO₄)₂ (M = Co, Ni) complexes²²⁴. Although the general pattern of the observed contact shifts has the gross features of spin delocalization via a π mechanism, Perry et al. concluded that [‡]H contact shifts alone do not provide sufficient information for an unambiguous distinction between a π or σ mechanism for spin delocalization in paramagnetic metal complexes, especially in the absence of MO calculations 224 In addition the ratios of the proton shifts for Co^{II} , with unpaired electrons in both the e_g and t_{2g} sets, and N_1^{II} , with unpaired electrons only in the e_g set, are identical, contrary to what one might have expected. Thus, Perry et al. suggested that the contact shifts of atoms other than the protons (13C or 14N) should be determined before conclusions concerning the importance of spin density delocalized in σ or π molecular orbitals of the aromatic N-oxide ligands are reached 224. Recent ¹H NMR studies of [M(PNO)₆](BF₄)₂ complexes (M = Fc, Co, N1) established that the contact shift ratios of the pyridine Noxide protons are identical for these three metal ions 261 INDO spin density calculations on N1(AA), L2 complexes (L = PNO and derivatives, QNO, IQNO) suggest that the direction of spin transfer is from ligand to metal 262, 263. Metal orbitals were neglected in these calculations, which considered only the ligand fragment; metal-to-ligand spin transfer was

considered as relatively unimportant, since the metal atom is separated by an oxygen atom from the antibonding π orbitals of the ring system 262,263 . The results of INDO calculations were in better agreement with NMR and EPR data than those made by other methods of calculation 262 (e.g. Huckel method; cf. ref. 264). Contact shift data for the above Ni^{II} complexes demonstrate that 2,6-LNO, containing two electron-releasing ortho substituents, is a considerably stronger ligand than PNO and mono-substituted derivatives 262 , this is in agreement with Dq values 145 (vide supra) and $v_{\rm M-O}$ data 193 reported for these ligands

Ligand exchange kinetics in N-oxide paramagnetic metal complexes have also been studied by ¹H NMR spectroscopy ^{147, 157, 265} For complexes of the type [M(AA)₂-(4-PicNO)₂] it was found that the rates of N-oxide exchange are faster in Co¹¹ than in Ni^{II} complexes; this order of lability for hexacoordinated Co^{II} and Ni^{II} complexes has been observed in many other cases and is in agreement with ligand-field stabilization arguments ¹⁵⁷. [Co(2,6-LNO)₄](ClO₄)₂ yields [Co(2,6-LNO)₅](ClO₄)₂ when dissolved in the presence of excess ligand ¹⁴⁵, the latter complex is quite stable over a wide range of conditions in CD₃NO₂/(CD₃)₂CO (1·1) solutions ¹⁴⁷, proton NMR studies indicate that this trigonal bipyramidal cationic complex exhibits a first-order exchange rate law, suggesting that the exchange mechanism may be dissociatively controlled ¹⁴⁷ Studies of [Ni(3-PicNO)₆] [BF₄]₂ in the same solvent mixture, involving variation of the free ligand concentration, demonstrated that the exchange rate is independent of this concentration ²⁶⁵.

Proton NMR spectroscopy has been utilized in several studies of diamagnetic metal ion complexes with N-oxides NMR shifts of the N-oxide ring a-protons in 4-substituted pyridine N-oxide-UO2Cl2 complexes were correlated 210 with vN-O, in mixed-hgand, 4-Z-PNO-β-ketoenolato-uranyl complexes, the chemical shifts of the N-oxide α-protons vary linearly with the σ constant of the substituent; however, the chemical shifts of the β -protons in these complexes are reasonably constant 209 , except when $Z = NO_2$ In $(CH_3)_3MX$ -- (4-Z-PNO) complexes (M = Sn, Pb, X = Cl, Br) the β -protons of the N-oxide are sensitive to substituent effects, whereas the resonance of the exprotons appears static or even suffers modest high-field shifts on complexation, the latter effect was attributed to a shielding, having its origin in the magnetic influence of the bulky tin or lead atoms, and specifically affecting the ortho regions 201 A more sensitive response was observed for the N-oxide protons in complexes of the type $(CH_3)_2SnCl_2 \cdot 2(4-Z-PNO)$, since a greater range in J is theoretically and actually possible in these complexes 266. Studies of analogous 2,4-LNO complexes with (CH₃)₃MX show a marked movement of the resonance of the α-proton to high field, as well as indications of a steric congestion in the region of the 2-methyl group, which, because of its bulk displaces the metal atom towards the unsubstituted 2position 201. This effect is less pronounced in (CH₃)₂SnCl₂ · 2(2,4-LNO), since the inductive deshielding effect is greatest in this case, and tends to nullify the shielding effect 201 In 2,4,6-colliding N-oxide complexes with (CH₃)₃MX, a rather severe steme inhibition of approach of the metal to form a strong bond with oxygen is suggested by the ¹H NMR data (CH₃)₂SnCl₂ forms a 1-1 pentacoordinated complex with this ligand, formation of the 2-1 complex is obviously sterically hindered 201.

Finally, the NMR chemical shifts in (A)PtCl₂(L) (A = olefin or CO) of the pyridine ring and olefinic ligand protons 267,268 have been rather extensively discussed in a previous review 2 .

(c) NOR spectra

 35 Cl and 79 Br nuclear quadripole resonance (NQR) studies of binuclear complexes of the types $[Cu(L)X_2]_2$, $[Cu(L)X_3(DMSO)]_2$ and $[Cu(L)_2X_2]_2$ (L. "N-oxide, X = Cl or Br) are generally suggestive of the exclusive presence of terminal halide ligands 244,245 Similar studies (35 Cl, 81 Br, 127 l) on $Hg(L)X_2$ complexes suggest that tetrahedral mercury is unlikely in these compounds 269 . A recent X-ray study of the 3,5-dibromopyridine N-oxide. $HgCl_2$ complex of this type shows that this lattice is made up of infinite chains of $HgCl_2$ molecules; thus, with the coordination of the N-oxide ligand mercury attains very distorted pentacoordination 270 . All the chlorine atoms in the lattice bridge to some extent 270

(d) EPR spectra

In addition to EPR data obtained for aromatic amine N oxide complexes with cupric halides and 3d metal β -ketoenolates (vide supra), EPR studies have been reported during several other studies. Thus, X-band EPR spectra of $\{\text{Pe}(\text{PNO})_{6}\}X_{1}$ (X ** ClO_{4} or $\text{NO}_{3}\}$) complexes are clearly indicative of a severe distortion from pure O_{h} symmetry $^{1/2}$ $\{\text{Mn}(\text{PNO})_{6}\}(\text{ClO}_{4})_{2}$ has a g-value of 2.00 ± 0.01, and a band width of about 250 gauss Nuclear hyperfine splitting was observed when this complex was diluted in the isomorphous Zn^{H} analog 111 . No X-band EPR spectrum has been observed for $\{\text{Ni}(\text{PNO})_{6}\}(\text{ClO}_{4})_{2}$, this was attributed to a zero-field splitting of the ground state larger than the energy of radiation; measurements at higher frequencies would be expected to give a resonance signal 111 $\{\text{Cu}(\text{PNO}_{6}\}(\text{ClO}_{4})_{2}\}$ shows a single band at $g = 2.15 \pm 0.01$ (width 60 gauss). The first derivative of this band is symmetrical even below room temperature, the EPR signal becomes asymmetric at -40 to -60°C . In view of the isomorphism of this complex and the Ni^{II} analog, and the fact that $\{\text{Cu}(\text{PNO})_{6}\}^{2+}$ complexes exhibit split $\nu_{N} = 0$ bands, the above data were attributed to a possible dynamic Jalin. Teller distortion, which becomes static at lower temperatures 111

(e) Mossbauer spectra

The 57 Fe Mossbauer spectrum of [Fe(PNO)6](ClO4)2 exhibits normal chemical shift and quadrupole splitting for hexacoordinated, high-spin Fe^{II} compounds 111 Fe(PTNO)₃ (PTNO + 2-pyridinethiolate 1-oxide ligand) shows Mossbauer chemical shifts at 300 and 77"K suggesting that little, if any, additional covalency due to suffir exists in comparison with the spectra of Fe^{III} complexes with bidentate O, O-ligands ²⁷¹. Quadrupole splittings for Fe(PTNO), are smaller than those of O, O-ligand analogs 271 119 Sn Mossbauer spectra have also been reported in SnII adducts of the type SnX2+L (X = Cl, Br, NCS) the following order of decreasing donor strength for several ligands was derived from Mossbauer chemical shifts. triphenylarsine oxide > triphenyl phosphine oxide > pyridine > thiourea > PNO > diglyme > urea > water 272. The largest decrease in chemical shift occurs upon 1.1 complex formation for SoX₂ compounds. The addition of a second ligand molecule results in a smaller drop in chemical shift, possible explanations for this further drop in shift are that either the second ligand is weakly bonded to the tin d-orbitals or that it is not bonded to the tin atom, but the structure of the complex is such that the original bond between the Sn atom and the first ligand is strengthened 272. The Mosshauer spectrum of $(CH_4)_2SnCl_2(PNO)_2$, in which each set of identical ligands (i.e. CH_4 , Cl or PNO) are

trans to one another (structure XI) 131

shows a positive sign for the quadrupolar interaction and a negative V_{xx} (ref 273) In complexes of the types $R_2Sn(PTNO)_2$, the R groups are cis to each other for R = phenyl and trans to each other for R = n- C_4H_9 , as suggested by Mossbauer quadrupole splittings 274 Mossbauer data and the occurrence of a band attributable to v_{Sn-O} at 355 cm $^{-1}$, led to the conclusion 274 that Sn^{IV} is octacoordinated in $Sn(PTNO)_4$ Finally, complexes of the type $RSnX(PTNO)_2$ (R = C_4H_9 , C_6H_5 ; X = Cl, NCS) were characterized as involving R and X groups cis to each other, on the basis of Mossbauer, IR and electric dipole moment studies 275 .

(f) Luminescent metal complexes

Fluorescent Eu^{III} complexes with aromatic amine N-oxides of various types have been prepared and characterized on the basis of fluorescence emission spectral studies $^{276-281}$. Assignments of $^5D_0 \rightarrow ^7F_{0-3}$ and $^5D_1 \rightarrow ^7F_{0-2}$ transitions led to the following conclusions regarding the stereochemistries of these compounds In [Eu(PNO)₈]X₃ complexes (X = Cl, Br, I, ClO₄, PF₆) the Eu^{III} ion is in a site with D_{4d} symmetry, slightly distorted to D_{2d} , the stereochemistry of the complex cation is square antiprismatic 279,281 1:2 adducts between this(- β -ketoenolato)Eu^{III} and aromatic amine N-oxides $^{276-278,280}$ have a face-centred trigonal prismatic structure, and the point symmetry 278 at the rare earth site is $C_{2\nu}$ 1 i analogs 276,280 are most probably heptacoordinated Finally, Eu(PNO)₃Cl₃ and analogous complexes are obviously hexacoordinated 276 .

(g) Crystal structure determinations

The literature is rich in X-ray crystal structure determinations of N-oxide metal complexes of various types $^{125-134}$, 167 , $^{240-243}$, 268 , 270 , $^{282-286}$. The data are presented in appropriate sections, during the discussion of these metal complexes or their properties. Unfortunately, no X-ray data have been as yet published on N-oxide complexes involving cations of the type $[ML_6]^{n+}$. The stereochemical aspects of these complexes are discussed below

(vii) Stereochemical aspects of cationic metal complexes

$(a) [ML_6]^{n+}$

Byers et al ¹²³ interpreted the combined evidence provided by ν_{N-O} , ν_{M-O} and (d-d) transition splittings and the magnetic behavior (vide supra) of hexakis-(N-oxide) cationic metal complexes in terms of a ligand-field symmetry lower than O_h . The MO_6 moieties may be O_h , but the nonlinear M-O-N groupings and arrangement of the aromatic rings in

space introduce lower symmetry components 123 , so that the true (local or effective) symmetry influencing the metal ion is lower than O_h . The splittings of the (d-d) transitions in the electronic spectra are generally consistent with a symmetry lowering to S_6 or D_{3d} symmetry, however, in the case of Ni^{II} complexes, where the spin-orbit coupling coefficient is moderately large and the splitting moderately small, the possibility of attributing the components of the spectrum to spin-orbit structure cannot be entirely excluded 123 . On the other hand, a molecule of S_6 symmetry would be expected to give rise to two active ν_{N-O} and two active ν_{M-O} bands of classification 123 $A_n + E_n$. The magnetic data were discussed in Sect. $C(\nu)$. Although these observations provide little information when viewed individually, their combination provides definitive evidence 123 in favor of an interaction between the inetal d orbitals and the ligand orbitals such that the effective symmetry of the species is lower than O_h .

Reedijk observed single $\nu_{N=0}$ and $\nu_{M=0}$ bands in most of the $[M(PNO)_{K}]^{n*}$ complexes; $v_{\rm N=0}$ splittings were observed only in the case of $[Cu(PNO)_{\rm A}]^{2*}$, and attributed to the Jahn - Teller effect 111 In the low-frequency region additional hands that might possibly be attributed to a splitting of PM=O have been observed for CrIII, FeIII, CoII, Nill and AlIII complexes of this type 48, 108. However, Reedijk, in view of the absence of split PM . (1) bands in [M(PNO)₆]^{2*} (M = Mn, Cu, Zn, Cd) and the isomorphism between [M(PNO)₆]^{2*} (M - Mn) to Zn, Cd), concluded that it is unlikely that deviations from O_A symmetry, if present, are responsible for these additional bands [11]. In the near IR spectrum of [Zn(PNO)₆]^{2*} an IR overtone was identified [11] at ca. 7300 cm. ⁴. Reedijk [11] pointed out that splittings of the lower energy $(d \cdot d)$ bands reported by Byers et al. 123 for Coll and Ni^{II} involve one hand in this region (7280 cm⁻¹), and thus, no conclusions regarding possible distortion of the octahedron may be derived from these splittings. It should be noted, however, that [Ni(4-PicNO)6]24 exhibits three bands in this region (7280, 8060, 9000 cm⁻¹)¹²³; these probably account for both a splitting of the (d-d) transition ${}^3A_{2a} = {}^3T_{2a}$ and the IR overtone mentioned above. Reedijk concluded that the general information obtained from IR and electronic spectra, magnetic properties and X-ray powder diagrams suggests that the MO6" octahedral groups in PSO complexes are hardly distorted, and only the relatively low $\mu_{\rm eff}$ recorded for $[{\rm Co(PNO)_6}]^{2*}$ complexes may be an indication 111 for a symmetry lower than O_h

A crystal structure determination of a representative $\{MI_6\}^{n*}$ complex would be most desirable at this point. It may be stated, nevertheless, that the overall evidence and stereochemical considerations presented by Byers et al. ¹²³ in combination with the established invariable presence of bent M-O. N groupings in aromatic amine N-oxide metal complexes ¹²⁵ 134, 167, 240–243, 268, 270, 281–285, the EPR spectrum of $\{Fe(PNO)_6\}(ClO_4)_3$ (ref. 177), and the fact that the spin delocalization patterns in $\{M(4\text{-PicNO})_6\}(ClO_4)_2$ (M=Co, Ni) suggest that M=O-N is also nonlinear in these complexes ²²⁴, are definitely in favor of an effective symmetry lower than O_h in the complexes under discussion. Furthermore, similar assignments were made for analogous $\{MI_6\}^{n*}$ complexes with DMSO ²²⁰ and tetramethylene sulfoxide ²⁸⁷, on the basis of stereochemical considerations (the M=O-S groupings are also nonlinear) and from detailed theoretical and experimental vibrational spectral studies.

(b) $[ML_5]^{2+}$

The crystal structure determination ¹³³ of [Co(2-PicNO)₅](ClO₄)₂ revealed that the CoO₅ chromophore has a slightly distorted trigonal bipyramidal structure; the average Co—O axial bond length is 2.098 Å and the average Co—O equatorial bond length is 1.975 Å. The Co—O—N angles for the three equatorial and one of the axial Co—O bonds are 121–124°, but that corresponding to the other axial Co—O bond is 134°. The perchlorate groups are ionic ¹³³.

(c) $[ML_4]^{2+}$

Stereochemical considerations by Byers et al. indicate that $[ML_A]^{2+}$ complexes (M =mainly Cu^{2+} ; L = PNO and derivatives) have a D_{4h} (square planar) symmetry if only the MO₄ moiety is examined; however, interaction of the copper d-orbital wave functions with the ligand wave functions via the nonlinear M-O-N bonds will lead to a lowering of the effective symmetry 123 . There are a number of possible orientations of the pyridine N-oxide about the copper atom which would minimize steric interaction between adjacent ligand molecules. The most symmetric of these structures have C_{4h} , D_{2d} and C_{4v} symmetry 123. Unequivocal IR evidence in support of these predictions was not obtained 123 but the crystal structure determinations of $[Cu(PNO)_4]X_2$ (X = ClO_4 , BF₄) established ^{128, 282, 24} that the complex cation has indeed an effective symmetry close to C_{4h} ; the CuO_4 chromophore has a square planar arrangement (Cu-O bond lengths = 1.92-1.93 Å) and the arrangement of the four PNO molecules around the Cull ion is a "swastika"-like configuration, the nitrogen atoms lying approximately in the copper—oxygen plane and the benzenoid rings lying approximately perpendicular to this plane (Cu-O-N angles 116.7-118.6°). The polyanions occupy approximately octahedral positions, but are not involved in any coordination 128, 282, 283, since the closest Cu-O (or F) approach is 3.34-3.38 Å. The isomorphous $[M(2,6-LNO)_4](ClO_4)_2$ complexes (M = Ni, Cu) have ¹⁴⁵, most probably, stereochemistries similar to [Cu(PNO)₄]²⁺; Fe^{II} and Co^{II}-2,6-LNO analogs are not isomorphous with the above complexes and may involve greater distortion from pure D_{4h} symmetry ¹⁴⁵. Finally, for paramagnetic $NiL_4(ClO_4)_2$ complexes (L = 2-PicNO, 2,6-LNO), a crystal structure determination would be desirable in order to establish whether these complexes are bi- or polynuclear N-oxide-bridged cations 144, 193, or monomeric involving coordinated perchlorate 146 (vide supra). The latter possibility might appear as rather remote, as no IR bands attributable to coordinated perchlorate were observed in these complexes 144, 193; however, for similar pentacoordinated divalent 3d metal complexes with phosphine oxides not exhibiting splittings of the ionic perchlorate IR bands, the overall evidence was interpreted as pointing to the presence of [ML4(OClO3)]+ cations by certain groups 136, 140, 288; while other groups believe that the presence of [L3ML2ML3]4+ cations is more probable 138, 289.

(d) $[ML_2]^+$, $[ML_3]^+$ and $[M_2L_4]^{2+}$

Complexes of aromatic N-oxides with AgI perchlorate, of the types $[AgL_2](ClO_4)_2$, have been characterized as involving either a linear, mononuclear $[AgL_2]^+$ cation 290 or a binuclear, N-oxide-bridged $[LAgL_2AgL]^{2+}$ cation 148 , by different groups of workers. HgI analogs were formulated 291 as involving four ligand groups per Hg_2^{2+} ion (i.e. $[Hg_2L_4](ClO_4)_2$). 3:1 N-oxide—AgClO₄ complexes are believed 290 to be of the type

[Agl.2](ClO4). L, the formulation [Agl.3](ClO4) cannot be ruled out, however.

(viii) Metal complexes of monodentate mono-Noxide ligands

(a) Complexes with 3d metal ions

Several ScIII complexes with aromatic amine N-oxides have been reported, i.e. ScL₃-(NCS)₃ (I. = PNO, 2-, 3- and 4-PicNO, 2,6-LNO)²⁹², complexes of this type are neutral and of low symmetry, as demonstrated by $\nu_{\rm N=O}$ and $\nu_{\rm C=N}$ splittings (Table 10), the NCS ion is N-bonded ²⁹². ScIII perchlorate forms cationic [ScL₆]³⁺ complexes with PNO ^{120, 293} and the picoline N-oxides ¹²⁰. These complex cations are also distorted octahedral, as shown by splittings of the $\nu_{\rm N=O}$ and $\nu_{\rm Sc=O}$ modes ¹²⁰ (Table 10). The titanium complexes with N-oxides isolated in crystalline state involve the Ti⁴⁺ and TiO²⁺ ions, however, complexes of Ti³⁺ and, possibly, Ti²⁺ with monodentate aromatic amine N-oxide ligands are most probably present in Ziegler- Natta catalysts for olefin polymerization (TiCl₃-AI

TABLE 10. Scandium, titanium and variadium complexes with aiomatic amine N-oxides $^{\mu}$

Complex	Ref.
(Sc(PSO) ₆](ClO ₄) ₃	120
Sc(PNO) ₁ (NCS) ₃	120, 292
B(PNO) ₂ F ₄	190
Tr(PNO)(DMA)F _A b	153, 257
Tr(PNO)CIMU)F 4	257
TiO(fNO)5(CIO4)2	114
[DF3(PNO)]	259
Tr(PNO)2[CaH4(O)2]2	295
(V(4-MeOPNO) ₀ [(CIO ₄) ₃	H2
V(PNO) ₂ F ₄	192
V(PNO) ₂ Cl ₄	222
VO(PNO)5(CIO4)2	81, 115, 223
VO(4-PicNO) ₄ (ClO ₄) ₂ - H ₂ O	115, 223
VO(4-CNPNO)U ₂ · HF · H ₂ O	297
VO(PNO)4Cl3+H2O	115, 223
VO(4-BrPNO) ₂ Cl ₂ - H ₂ O	115, 223
VO(2,6-ENO) ₂ Cl ₂	115, 223
VO(PNO) ₆ Hr ₂ + 2H ₂ O	115, 223
VO(4-CIPNO) ₂ Rr ₂ - R ₂ O	115, 223
VO(4-PicNO)4(BF4)2 + H2O	115, 223
VO(PNO) ₃ (NCS) ₂	к3
VO(PNO)4(NCS)2	н 3
VO(4-PicNO) ₂ (NCS) ₂	н3
VO(PNO)(AA) ₂ [©]	207
VO ^{3*} PNO pyrocatechol	
bne	300
VO2* PNO pyrocatechol systems	

Representative examples

PDMA - N. N. dimethylacetamide, TMG = tetramethylurex

CAA = acctylacetonato ligand

alkyl combinations), modified by various pyridine N-oxides 294 . TiF₄ · 2L adducts with a variety of aromatic N-oxides have been reported 142 , 152 , 153 , 190 , 192 , 203 , 204 , $^{257-259}$, and their properties were discussed in some detail in Sects C(u), (ui) and (vi) As already menuoned the cis octahedral complexes of this type are normally stabilized, and only sterically hindered N-oxides (2,6-LNO) favor the formation of the trans isomer Mixed N-oxide—N,N-dimethylacetamide or tetramethylurea complexes with TiF₄ (i e TiF₄ · L · L') where also synthesized 1 (vide supra) Anionic complexes $[TiF_5 \cdot L]^-$ with PNO and 4-substituted derivatives (methoxy-, methyl-, chloro-, acetyl-, nitro-) have been prepared in situ and studied by 19 F NMR spectroscopy 259 . PNO and QNO form 5 1 complexes 114 , 121 with $^{120}C(ClO_4)_2$ The 12 and 12 modes of ionic 12 are not split in the IR spectra of these compounds, which were formulated as 12 120 compounds, which were formulated as 12 120 120 involving a hexacoordinated cationic 124 complex 114 , 121 . Finally, 120 PNO- 124 -pyrocatechol systems form a complex 295 of the type 12 120 120 at pH 2-3. Typical examples of 12 complexes with N-oxides are shown in Table 10

VO2+ complexes with N-oxide ligands have been extensively studied 1,81-83, 115, 146, 202, 206-208, 223, 296-298. Oxovanadium (IV) salts form complexes of various stoichiometries, i.e VOL_5X_2 (X = Cl, Br, ClO₄, NCS), VOL_4X_2 (X = Cl, Br, ClO₄, BF₄, NCS), VOL_2X_2 (X = Cl, Br, NCS), aquo adducts of complexes of the above types, $VOLF_2 \cdot HF \cdot H_2O$, and $VOL_4Br(OH)$ (see also Table 10) 1.81, 83, 115, 146, 202, 223, 297, 298. Anion coordination and incorporation of water molecules are important factors influencing the ligation of the N-oxides in the first coordination sphere of the metal ion. Environmental conditions (interaction medium, degree of dehydration of the oxovanadium(IV) salt, etc.) influence the stoichiometry of the complex stabilized 1. Thus, for example, both tetrakis- and pentakis-(4-chloropyridine N-oxide)oxovanadium (IV) perchlorate complexes can be isolated, depending on the degree of prior dehydration of the oxovanadium(IV) perchlorate solution 1 In most cases oxovanadium (IV) salts were utilized as starting materials for the syntheses of the above complexes 115, 146, 202, 223, 297, 298, when VIII salts are used instead, V^{III} , VO^{2+} or mixed V^{III} $-VO^{2+}$ complexes may be obtained (vide supra, Sect. C(i)) 81-83. Thus V(NCS)3, under mert conditions, interacts with N-oxides yielding VO(NCS)2 complexes $(\mu_{eff} \simeq 1.70 \text{ B M.})^{83} \text{ V}(\text{ClO}_4)_3 \text{ forms VO}(\text{ClO}_4)_2 - N \cdot \text{oxide complexes, when the}$ interaction takes place in the atmosphere 81, whereas, under inert conditions, [VL6](ClO4)3 compounds are obtained (for L = 4-MeOPNO or 4-CIPNO, fairly pure VIII complexes were isolated, showing a μ_{eff} of 2 54–2 71 B M , the PNO, 4-PicNO and 4-NO₂PNO analogs were contaminated with oxovanadium(IV) products, clearly showing IR $\nu_{V=0}$ bands)⁸². Oxovanadium(IV) \(\beta\) ketoenolates form 1.1 adducts with pyridine and quinoline \(N\)-oxides (Table 10) 206-208, 296 The N-oxide ligand coordinates at the trans position, relative to the variadyl oxygen, in these compounds 206-208,296. VO(AA), has been used successfully as a reference acid for aromatic N-oxides, in fact, a linear relation exists between the $VO(AA)_2 - N$ -oxide adduct formation enthalpy and the $\nu_{V=0}$ shift upon formation of this adduct 149, 207, 208 The presence or absence of trans-axial N-oxide ligands in VO2+ complexes can be generally deduced from the position of vy=0, thus, hexacoordinated compounds involving one trans-axial N-oxide ligand exhibit this mode at 960-950 cm⁻¹, whereas pentacoordinated complexes, not involving ligation of this type, show 115, 149, 206-208, 22 $\nu_{V=0}$ at 1000-990 cm⁻¹. For the electronic spectral bands of oxovanadium(IV) complexes with N-oxides, various assignments have been made by different groups 83, 146, 297

Thus, for example, for the spectra of oxovanadium(IV) perchlorate with alkyl-substituted pyridine N-oxides, Schmauss and Specker 146 made the following assignments. $b_2 = b_1^*$ at 10.6 12.5 kK, $b_2 \rightarrow c_0^*$ at 12.5 16.3 kK, $b_2 \rightarrow la_1^*$ at 14.6 15.0 kK, and a charge-transfer band at 25.6. 27.5 kK. Band assignments for VIII complexes were given in Table 7 VCI₄ + 2L (L = PNO, 4-NO₅, 4-Cl₅, or 4-MeO-PNO, 2- and 4-PicNO, 2,6-4-NO) and VCI₄ · I₂ (I. * 4-benzyloxy-PNO) complexes were prepared by Bridgland and McGregor under mert conditions, as exposure of these compounds to moist air leads to their conversion to the corresponding VOCI₂ complexes ²²² These complexes exhibit magnetic moments of 1.65 1.78 BM, and their electronic spectral bands were assigned as follows 222 $^{-2}B_{2e}$ $^2B_{1g}$ at 14.6 17.0 kK, $^2B_{2g} = ^2A_{1g}$ at 20.0 22.0 kK VF₄ 21. complexes with PNO and 4-substituted derivatives were also prepared 299 , and their IR spectra were studied 192 , $\nu_{\rm N=O}$ was found insensitive to 4-substituent effects in this series of complexes ¹⁹². $V^{\rm V}$ pyrocatechol. PNO systems form a variety of colored products at different pH regions, the composition of the species formed in this system was found by the equilibrium displacement method; the formation of violet 1.1.1 and 1.1.2 complexes involving the VO_2^{*} ion, and green 1.2.2, 1.1.1 and 1.2.1 complexes of the VO_2^{*} ion was proposed 300 (Table 10) The complexes of the remaining M metal ions (Cr to Zn) are discussed together. As already mentioned (vide supra, Sects. C(u) = (vu), Tables 3. 8, Figs. 2, 3), non-sterically hindered aromatic amine N-oxides form [ML6] Xn (M = Crlli, MnII, FeII, FeIII, CoII, NiII, Cu^{II} , Zn^{II} , n = 2, 3; $X = ClO_4$, BF_4 and, with the exception of Cu^{II} , NO_3) and $\{CuI_4\}X_5$ (X = ClO_4 , BF_4 , NO_3) complexes 16 = 18,48,53,108 = 112,117 = 119,122,123,128,142 = 144,146 . 148, 177, 205, 213, 217, 218, 224, 261, 265, 282, 283, 301 Por Critt, the complete series of $[Cr(OH_2)_{6-n}(PNO)_n](ClO_4)_3$ (n = 0-6, inclusive) was identified in solution ¹⁷¹ A 7-1 PNO Fe(ClO₄)₃ complex isolated by Carlin 17 was formulated as [Fe(PNO)₆](ClO₄)₃. PNO. The properties of the cationic metal complexes were described above. Sterically himdered atomatic amine N-oxides do not influence the stoichiometries 145, 146, 149, 159 of Crill or Fell cotionic complexes, which are also of the type [ML6]3*. In the case of divalent 3d metal ions, however, $[ML_n]^{2t}$ ($n \le 6$) complexes with ligands of this type may be stabilized 123, 133, 144, 145, 147, 149, 193 (vide supra, Sect. C(n), (vn)). Ligands behaving in this mainer are 2-substituted and 2,6-disubstituted pyridine N-oxides and acridine Noxide. The environmental conditions are of key importance as far as the nature of the complexes precipitated is concerned. Thus, for instance, $[Co(2-PicNO)_k](ClO_k)_0$ was synthesized 123 by dissolving equal weights of ligand and salt in a small amount of hot alcoholwith prolonged cooling of the resulting mixture at 0°C, while [Mn(2,6-LNO)₄(OCIO₂)]- (ClO_A) and $\{M(2,6\cdot I.NO)_A\}(ClO_A)_2$ (M = Fe, Co, Ni, Cu, Zn) (square-planar complexes) were precipitated by mixing triethyl orthoformate, acctone solutions of ligand and salt 145, On the other hand, complexes of the following stoichiometries were obtained when 7-1 ligand: hydrated salt methanolic or ethanolic solutions were allowed to cool at = 30°C. $[MnL_6](ClO_4)_2$ (L = 2-PicNO, 2-EtPNO), $[Co(2-PicNO)_6](ClO_4)_2$, $[Co(2,6-LNO)_6]$. $(ClO_4)_2 + 2H_2O$, $[Co(2,6-1,NO)_4(OH_2)_2](ClO_4)_2$, $[NiL_6](ClO_4)_2 + H_2O(L = 2-PicNO, ClO_4)_2 + H_2O(L = 2-PicNO, ClO_4)$ 2-EtPNO), [Ni(2,6-LNO)₆](ClO₄)₂ · 3H₂O, Ni(2,6-LNO)₄(ClO₄)₂ (green, paramagnetic) 146. It is noteworthy that complexes of the types $[M(2,6-LNO)_6](CIO_4)_2 \cdot 3H_2O(M = Co, Ni)$ and $(M(2,6-LNO)_6)(ClO_4)_3 \cdot (2,6-LNO)$ (M = Cr. Fe) are colorless, the Cr^{III} complex of this type exhibits unusually weak (c = 0.5 - 0.6 in nitromethane) (d = d) bands ¹⁴⁶. [Cr-

 $(2,6-LNO)_6$ [(ClO₄)₁, on the other hand, shows (d · d) bands with normal extinction co-

efficients in nutromethane (ϵ = 58.6 for the $^4A_{2g} \rightarrow ^4T_{2g}$ transition) 143 The green, paramagnetic Ni(2,6-LNO)₄(ClO₄)₂ complex is converted to the violet diamagnetic [Ni(2,6-LNO)₄](ClO₄)₂ during prolonged (several months) desiccation 302 over P₂O₅; the nature of this reaction is currently under study. It should also be noted that even when the same synthetic procedure is employed, N-oxides with similar steric features may form complexes of different stoichiometries. e.g. 2-PicNO yields NiL₄(ClO₄)₂, while the more severely sterically hindered 2-EtPNO forms [NiL₆](ClO₄)₂ \cdot 2H₂O, under the same conditions 144 ; and 4-EtOPNO forms [ML₅](ClO₄)₂ and [ML₆](NO₃)₂ (M = Co, Ni) complexes $^{142, 143}$ The structural aspects of [ML₅]²⁺ and [ML₄]²⁺ complexes with N-oxides were discussed in Sect C(vii).

In addition to the cationic complexes described above, divalent 3d metal nitrates also form neutral complexes, involving coordinated mono- or bidentate nitrato groups. The complexes usually obtained ¹⁶, 18, 110, 126, 143, 144, 158, 159, 248, 303 are of the type [ML₂-(NO₃)₂] The Mn^{II}, Co^{II}, Ni^{II} and Zn^{II} complexes of this type are in most cases hexacoordinated involving two coordinated bidentate nitrato groups, however, [M(2,6-LNO)2-(NO₃)₂] (M = Mn, Co, Ni, Zn) complexes exhibit IR and electronic spectra favoring pentacoordinated configurations, involving one mono- and one bidentate nitrato ligand 159 (cf Sect C(n)) [CuL₂(NO₃)₂] complexes contain monodentate nitrate exclusively. The PNO complex of this type is a pentacoordinated, PNO-bridged dimer 126. This compound involves bent M-O-N (nitrato) groupings 126, thus, the coordinated monodentate nitrate has a C_s local symmetry, in complexes of this type, while the bidentate nitrato group in analogous $[ML_2(O_2NO)_2]$ compounds is of $C_{2\nu}$ local symmetry (see refs. 304, 305). In fact, distinct differences were reported for the fundamental vibrational modes of coordinated NO₃ of 4-EtOPNO complexes involving mono-([CuL₂(NO₃)₂], [CoL₃(NO₃)₂]) and bi- (ML₂(NO₃)₂], M = Co, Ni, Zn) dentate nitrato ligands ¹⁴³ Coll and Cull nitrate-PNO complexes have found application as semiconductors for thermistors 306. Neutral 3d metal nitrate complexes involving ligand-to-metal ratios higher than 2 have also been reported, viz. $[Co(4-EtOPNO)_3(ONO_2)_2]$ (ref. 143), Ni(QNO)₃(NO₃)₂· $\frac{1}{2}$ H₂O, NiL₄·(NO₃)₂ (L = 2-EtPNO, 2,4-LNO)¹⁴⁴ Co^{II} nitrite complexes of the type $[CoL_2(NO_2)_2]$ (L = 2,4 and 2,6-LNO, 2,4,6-CNO, 2- and 4-MeQNO) are hexacoordinated, containing two chelating bidentate nitrito ligands 226. A few 3d metal sulfate 159, 198 and trihaloacetate 307 complexes with aromatic amine N-oxides were also reported. [ZnLSO₄] complexes (L = PNO, 4-PicNO), with polynuclear structures involving coordination of all four oxygen atoms of the SO₄ group were proposed, the fundamental vibrations of the SO₄²⁻ anion do not exhibit any splittings; however, both the v_1 and v_2 mode of this group are IR-active, while ν_{2n-0} (sulfato) was identified at 261-260 cm⁻¹ Thus it was concluded that the SO_4 groups retain an essentially T_d symmetry during coordination of their four oxygens to neighboring ZnII ions 198. A number of 3d metal sulfate complexes with 2,6-LNO, recently reported, were formulated as follows [Co(2,6-LNO)(OH₂)₅](SO₄), [(2,6-LNO)(O₂SO₂)Ni(2,6-LNO)₂Ni(O₂SO₂)(2,6-LNO)], binuclear pentacoordinated, 2,6-LNO-bridged, with chelating bidentate sulfato ligands; [(2,6-LNO), Cu(SO₄), -Cu-(2,6-LNO), l, bunuclear, tetracoordinated, involving bridging bidentate sulfato groups, and [O₂SO₂)Fe(2,6-LNO)₂Fe(O₂SO₂)], binuclear, tetracoordinated, with bridging 2,6-LNO and chelating bidentate sulfato ligands 159. These formulations were based on spectral (IR, electronic) and magnetic evidence 159. Metal trihaloacetates form 307 form the following

complexes: [MLX₂] (M = Mn, Co, Ni, Zn; L= PNO, 4-PicNO; X = CF₃COO⁻, CCl₃COO⁻) and [CuL₂X₂]. The properties of these complexes suggest that the trihaloacetato ligand is coordinated, through one or both oxygens of the COO group³⁰⁷. A series of 2:1 complexes of Cu^{II} benzoate with N-oxides (PNO, the PicNO's, 2,6-CNO, 2,4,6-LNO, QNO, 2- and 4-MeQNO) were recently prepared; these complexes exhibit subnormal magnetic moments (1.38–1.42 B.M.)³⁰⁸. Cu^{II} acetate ²³⁰ and salicylate analogs are also magnetically subnormal, while bis-(salicylato) bis(PNO)—Cu^{II} shows a μ_{eff} of 1.95 B.M. (ref. 309).

3d metal halides form a wide variety of complexes with aromatic N-oxides (see also Sect. C(ii)). Some details on Cull halide complexes with N-oxides have already been presented in Sect. C(ii), C(v) and Tables 2 and 9. Magnetically normal 2:1 N-oxide-Cull halide complexes may be obtained in two crystalline modifications (a third modification is the dimeric, N-oxide-bridged structure) 167. Green monomeric [CuL₂X₂] complexes (e.g. L = 4PicNO, X = Cl) have a trans square planar geometry ²⁸⁴, while yellow isomers (e.g. L = 2.6-LNO, X = Cl) have a distorted geometry, which is intermediate between cis square planar and tetrahedral ²⁸⁵. As is the case with 1:1 analogs (vide supra), monomeric 2: 1 N-oxide—Cull halide complexes may form adducts with neutral ligands; these adducts are magnetically normal ¹⁶⁷ (Table 9); a monomeric adduct of this type, [Cu(4-NO₂PNO)₂Cl₂-(OH₂)₂], consists of trans square planar CuCl₂(OH₂)₂ groups having the amine-oxide oxygen atoms of the 4-NO₂ PNO molecules loosely bonded to the copper ion at the axial positions; the geometry of the complex is distorted tetragonal bipyramidal 134. Although the polymeric [Cu₃Cl₆(2-PicNO)₂(OH₂)₂]_n complex exhibits low magnetic moments 127, 167 (vide supra), several $Cu_3Cl_6L_2$ (L = 4ClQNO, 4-Cl-6-MeQNO) and $Cu_4Cl_8L_3$ (L = 3-NO₂-6-MeQNO) complexes are magnetically normal 186. These compounds are most probably characterized by chlorine, rather than N-oxide, bridges 167. A number of Cu4OX6 L4 (X = Cl, Br; L = PNO) and other neutral ligands) complexes were also reported 310 . These compounds exhibit an IR band, characteristic of the Cu₄O group, at 600-500 cm⁻¹ (583 cm⁻¹ for the PNO complex); the four Cu atoms lie in a tetrahedral arrangement around the Cu4O oxygen; the halogen atoms are invariably bridging (each halogen is shared by two Cu atoms); while the four neutral ligands are terminal 310. Finally, Cu(PNO) Br2 was among the first N-oxide complexes to be reported 18.

Complexes of various stoichiometries may be formed during interactions between N-oxides and other 3d metal halides (Table 11). Ni(PNO)₆X₂ (X = Br, I) complexes obviously involve ^{18, 172, 185} the [Ni(PNO)₆]²⁺ cation. NiL₅I₂ (L = 2- or 4-PicNO) complexes were reported but not characterized ¹⁷². The red complex Ni(PNO)₄I₂ was obtained ¹⁸⁵ by heating the yellow [Ni(PNO)₆]I₂ at 100° C. Its magnetic moment (3.26 B.M.) is indicative ¹⁸⁵ of a hexacoordinated structure of the type [Ni(PNO)₄I₂]. 3:1 complexes have been reported for Fe^{III} and Co^{II} halides ^{16, 18, 177, 225}. [Fe(PNO)₃Cl₃] is neutral and probably cis octahedral ¹⁷⁷. Co^{II} complexes of this stoichiometry were formulated as [Co(PNO)₃X]X (X = Cl, Br, I), on the basis of characterization studies (mol. wt., conductances, $\mu_{\rm eff}$ of 4.67 B.M. for the bromide complex) ¹⁸. More recent studies of these chloride and bromide complexes led to the conclusion that they are of the type [Co(PNO)₆] [CoX₄]; in fact, the electronic spectra of these complexes are very similar to those of tetrahalocobaltate(II) compounds, while the CoBr₂ complex is isomorphous with the tetrabromocadmate(II) analog ([Co(PNO)₆] [CdBr₄]), which was also reported ²²⁵. 2:1 and 1:1 N-oxide 3d metal halide complexes are numerous and involve, in many cases, additional neutral

TABLE 11
3d Motal halide (Mn to Zn) complexes with aromatic amine N-oxides a

Complex	Coordination number	Heff (B.M.)	Ref.
Mn (PNO) ₁₄ Cl ₂	6 (polynuclear)	ь	172
Mn (PNO)Cl2 · H2O	6 (polynuclear)	5,77	172
Mn (PNO) Cl ₂	6 (polynuclear)	5.60	182
Mn (4-PicNO) 2 Br 2	6	5.82	172
[Fe(PNO)4Cl2][FeCl4]	6	5.83	205
Fe(PNO)3Cl3	6	b	177
$Co(PNO)Cl_2 \cdot xH_2O(x < 1)$	4 (tetrahedral)	Ь	182
Co(PNO)Cl2 · H2O	Probably 6	4.70, 4.75	16, 172
Co(4-PicNO)2Cl2	Probably 6	4.80	172
Ca(2,4-LNO) ₂ Cl ₂	4 (tetrahedral)	4.50	184
Co(PNO)3Cl2	Structure proposed: [Co(PNO)6][CoCl4]	4.75	16, 225
[Co(PNO)6][CdBr4]	6		225
$Co(PNO)_3X_3$ (X = Br, I)	Structures proposed: [Co(PNO) ₃ X]X and [Co(PNO) ₆][CoX ₄]	4.67, 4.58	18, 225
Ni (PNO)1/2Cl2	6 (polynuclear)	ь	172
Ni(PNO)Cl ₂	6 (polynuclear)	3.49	182
Ni(IQNO)Cl ₂ · ¼H ₂ O	6 (polynuclear)	ь	144
Ni(PNO)Cl ₂ · H ₂ O	6 (polynuclear)	3.21, 3.30	16, 172
Ni (QNO) Cl ₂ - 2H ₂ O	6 (polynuclear)	3.23	144
Ni (2, 6-LNO) ₂ Br ₂	6 (polynoclear)	3.10	172
Ni(PNO) ₄ I ₂	6	3.26	18 <i>5</i>
Ni(2-PicNO) ₅ I ₂	b	b	172
[Ni(PNO)6]I2	б	3.28	185
Zn (PNO)Ci ₂	6 (polynuclear)		172
Zn(2,6-LNO) ₂ Cl ₂	4 (tetrahedral)		130, 180

A Representative examples (Cull halide complexes are given in Table 9).

ligands (Table 11). FeX₃ · 2L complexes (X = Cl, Br; L = PNO, 4-substituted derivatives, 2-PicNO, 2,6-LNO) are invariably $^{177-179,205}$ of the type [FeL₄X₂] [FeX₄]; a complex of the type [Fe(PNO)₄Cl₂](ClO₄)· H₂O was also prepared 177 . ML₂X₂ (M = Mn, Co, Ni, Zn) complexes with various aromatic amine N-oxides have been reported 16, 18, 130, 142, 158, 172, 173, 180, 184, 297, 311, 312. Certain complexes of this type are obtained in the form of hydrates, or alcoholates, e.g. Ni(3-PicNO)₂Cl₂· H₂O, Ni(4-PicNO)₂Cl₂· (C₂H₅OH) (ref. 172), Ni(4-CNPNO)₂Cl₂· 3H₂O (ref. 297). Magnetic (μ_{eff} = 4.50—4.54 B.M.) and spectral properties are in favor of tetrahedral structures for CoL₂X₂ complexes 158 , 172, 174. The Zn¹¹ analogs are also monomeric tetrahedral 130 , 172, 180, 311, 312; the crystal structure determination of [Zn(2,6-LNO)₂Cl₂] revealed that the Zn atoms lie on two-fold symmetry axes and are tetrahedrally coordinated to two chlorine atoms and two oxygen atoms from the 2,6-LNO groups; the tetrahedral geometry is slightly distorted, owing to differences in atomic size 130 . ML₂X₂ (M = Mn, Ni) complexes exhibit electronic spectra and

b Not reported.

CuL, Cl, --- CuLCl,

(16)

magnetic moments ($\mu_{eff} = 3.10$ B.M. for Ni(2,6·LNO)₂Br₂; 5.82 B.M. for Mn(4-PicNO)₂-Br₂) suggestive of hexacoordinated, polynuclear structures ¹⁷². 1:1 complexes of N-oxides with Mn^{II}, Co^{II} and Ni^{II} halides are usually obtained in the form of hydrates ¹⁶, ¹⁴⁴, ¹⁷², ¹⁷³, ¹⁸², ²⁹⁷. Anhydrous MLX₂ complexes with these metal ions may be obtained either by utilizing triethyl orthoformate as the reaction medium ¹⁴² ¹⁸² or by heat treatment of ML₂X₂ (ref. 172) or MLX₂ · nH₂O (ref. 173) complexes. Complexes of aromatic amine N-oxides with metal halides, involving low M to L ratios, decompose at elevated temperatures yielding complexes with higher metal to ligand ratios ¹⁷². Similar, although not identical, behavior has been observed in 3d metal halide—pyridine complexes ³¹³. Some typical examples of reactions of these types are ¹⁶⁷, ¹⁷², ¹⁷³, ¹⁸⁵:

ZnLX₂ and M(L)_{1/2}X₂ (M = Mn, Ni) complexes can be obtained only by thermal decomposition of analogous complexes with higher N-oxide content ¹⁷². 1:1 and 0.5:1 N-oxide—Mn^{II}, Co^{II}, Ni^{II} or Zn^{II} halide complexes appear to be bi- or polynuclear in general ¹⁷², ¹⁷³, ¹⁸² The corresponding hydrated complexes are also polynuclear in most cases (e.g. Co(PNO)-Cl₂·H₂O, Ni(PNO)Cl₂·H₂O, Co(4-PicNO)Cl₂ exhibit electronic and low-frequency IR spectra suggestive of octahedral ligand-field symmetries ¹⁷²; a lower hydrate of the type Co(PNO)Cl₂·xH₂O, where x < 1, is tetrahedral and probably binuclear ¹⁸²). The low-frequency IR spectra of MLCl₂ (M = Mn, Ni) complexes favor the presence of chlorine, rather than N-oxide, bridges in these bi- or polynuclear complexes ¹⁸². For hydrated analogs, three possibilities exist, viz. chlorine, N-oxide or aquo bridges ¹⁴⁴.

Fe(NCS)₃ forms neutral complexes of the general type [Fe(NCS)₃L₃] (L = PNO, 2-, 3-, 4-PicNO, 2,6-LNO, 2-EtPNO and 2-isopentyl-PNO), involving N-bonded isothiocyanato ligands 177,314 . [CoL₂(NCS)₂] complexes (L = 2,6-LNO, 2,4,6-CNO) were characterized as polynuclear octahedral, containing NCS bridges 158 . Recent evidence for [M(2,6-LNO)₂-(NCS)₂] (M = Co, Ni) complexes is suggestive of penta- rather than hexacoordinated configurations (similarity of the electronic spectrum of the Co¹¹ complex 123 to that of [Co(2-PicNO)₅](ClO₄)₂, occurrence of $\nu_{\rm M-O}$ at ca. 380 cm⁻¹, as is also the case with other pentacoordinated 2,6-LNO-Co¹¹ and Ni¹¹ complexes 193 , $\mu_{\rm eff}$ of 4.73 (Co) and 3.38

(Ni) B.M., appearance of split $\nu_{C\equiv N}$ bands, occurring at both the "bridging" and "N-bonded, terminal" regions for the NCS group ³¹⁵, etc.) ¹⁵⁹. These compounds were, therefore, formulated as $[(2,6\text{-LNO})_2(\text{SCN})\text{M-(NCS})_2\text{-M(NCS)}(2,6\text{-LNO})_2]$, i.e. binuclear, involving both bridging and N-bonded (terminal) NCS ligands ¹⁵⁹. $[\text{Cu}(\text{PNO})_2(\text{NCS})_2]$ shows a normal magnetic moment (1.88 B.M.) ²³⁰; the 2,6-LNO analog has a μ_{eff} of 1.53 B.M., and was assigned a hexacoordinated polynuclear structure, exclusively involving bridging thiocyanato ligands (a coordination number of six in this compound is suggested by the occurrence of $\nu_{\text{Cu}=0}$ at 330 cm⁻¹ and the (d-d) transition maximum at 11.5 kK) ¹⁵⁹.

A number of adducts of N-oxides with 3d metal chelates have also been reported. Bis-(β -ketoenolato) M^{II} complexes (M = Co, Ni, Cu, Zn) reportedly form adducts with a variety of pyridine and quinoline N-oxides ¹³², ¹⁵⁴–157, ³¹⁶. (vide supra, Sects. C(ii), (vii)). Cu^{II} β -ketoenolates form square pyramidal 1:1 complexes with N-oxides and similar ligands ¹⁵⁶, ³¹⁶. Co^{II} and Ni^{II} β -ketoenolates tend to form 1:2 pseudo-octahedral adducts with N-oxides, unless the steric features of the N-oxide favor the stabilization of 1:1 adducts (e.g. 2, 6-LNO, QNO) ¹⁵⁴, ¹⁵⁵, ¹⁵⁷, ³¹⁶. The crystal structure determination of [Ni-(AA)₂(PNO)₂] shows that the six oxygen atoms coordinated to the nickel are in a nearly regular octahedral disposition; the PNO molecules are cis to one another ¹³² (Ni-O-N angle: 121°). A number of Co^{III} complexes of the type trans-[CoX(DH)₂L] and trans-[Co-(DH)₂L₂]X·H₂O (X = Cl, Br, I or NO₂; DH = dimethylglyoximato ligand; L = PNO or 4-NO₂PNO) were prepared by treating the corresponding aquo or methanolo (L = H₂O, CH₃OH) complexes with N-oxide ³¹⁷. An octahedral 2:1 adduct (μ _{eff} = 3.09 B.M.) of PNO with the square planar Ni^{II} ethylxanthate has also been prepared ³¹⁸. Finally, reaction of PNO with iron pentacarbonyl leads to the formation ⁸ of [Fe(PNO)₆] [Fe₄(CO)₁₃].

(b) Complexes with 4d and 5d metal ions

The complexes of Y^{III} are discussed in the next section, together with the lanthanide ion contplexes. A series of 2:1 N-oxide (PNO, and 4-MeO-, 4-Me-, 4-Cl-, and 4-NO₂-PNO) –ZrF₄ complexes were prepared (Table 12) and studied by IR spectroscopy ¹⁹¹. Interaction of ZrCl₄ and HfCl₄ with 2,6-LNO leads to the formation ¹⁷⁵ of ZrCl₄ · 3(2,6-LNO) and HfCl₄ · 2 (2,6-LNO). Both these complexes are neutral, the former being heptacoordinated and the latter hexacoordinated, probably involving cis coordination of the two N-oxide ligands ¹⁷⁵. ZrO(ClO₄)₂ forms complexes of the types [ZrOL₆](ClO₄)₂ (L = PNO, QNO), involving heptacoordinated Zr⁴⁺ ions ^{116,121}. Coordination of perchlorate does not occur in these compounds; the ν_3 and ν_4 IR modes of ClO₄ appear either as single bands or show small splittings, which have been attributed to crystal-field effects rather than coordination of the polyanion ^{116,121}. A complex of the type ZrOCl₂ · 2QNO was also reported ²⁹⁸.

Interaction of dodeca- μ_2 -chlorohexaniobium dichloride ([Nb₆Cl₁₂]Cl₂) with aromatic amine N-oxides (PNO, 4-Me-, 4-(Me)₂N-, 4-Cl-, 4-NO₂-PNO) leads to the formation ^{319, 320} of [(Nb₆Cl₁₂)Cl₂L₄] (Table 12). These complexes consist of a central (Nb₆Cl₁₂)²⁺ core, involving an octahedral cluster of six Nb ions of low formal oxidation state and twelve bridging chlorine atoms; an additional chlorine or N-oxide ligand is coordinated to each Nb atom in a "centrifugal" position such that the metal-ligand bond points radially outward from the center of the octahedral cluster ^{319,320}. Mo^{II} chloride, which also involves a Mo₆ octahedral cluster and is of the type [Mo₆Cl₈]Cl₄, behaves in a similar manner, forming

TABLE 12

Aromatic amine N-oxide complexes with 4d and 5d metal ions a

Complex	Ref.	Complex	Ref.
Zr(PNO) ₂ F ₄	191	(CO)Pt(PNO)Cl ₂	74, 79, 328
Zr(2,6-LNO)3Cl4	175	Pt(2,6-LNO)3Cl4	175
Hf(2,6-LNO)2Cl4	175	[Ag(PNQ) ₂]ClO ₄ · PNO	111, 290
ZrO(PNO)6(CiO4)2	121	[Ag(4-CNPNO)2](CIO4)	148
ZrO(QNO)2Cl2	298	AgNO ₃ · PNO	333
(Nb ₆ Cl ₁₂)(PNO) ₄ Cl ₂	319, 320	[Ag(PNQ)][C(NO2)3]	334
(Mo ₆ Cl ₈)(PNO) ₂ Cl ₄	320, 321	[Cd(PNO)6](ClO4)2	111
Mo(NO)2(PNO)2Cl2	323	[Hg(PNO)6](ClO ₄)2	109, 111, 18
MoO ₂ Cl ₂ · 2PNO	322	[Hg(PNO)6]X2 d	181
$[Mo(O_2)_2O](PNO)(OH_2)$	324	HgX ₂ · 2 (PNO) €	181
$[M(O_2)_2O](4-PicNO)_2 (M = Mo, W)$	324	$\{Cd(PNO)Br_2\}_n$	180
Re(CO) ₃ (PNO) ₂ Cl	96	Cd ₃ (PNO) ₂ Cl ₆	180
Ru(CO)3(PNO)Br2	325	[Cd2(3-PipNO)Cl4]n	180
Ru (2,6-LNO)3Cl3	179	[Hg(PNO)Cl ₂] ₂	180
[Rh(2,6-LNO)5CI]Cl2	179	[Cd(PNO)(NCS) ₂] ₂	199
(C2H4)Pd(4-PicNO)Cl2	80	[Hg(PNO)(SCN) ₂ ₂	181
Pd(4-EtOPNO) ₂ Cl ₂	142	$[Cd(2,6-1,NO)_4(ONO_2)_2]$	159
(C ₂ H ₄)Pt(PNO)Cl ₂	77, 327	$(CF_3)_2Hg \cdot nPNO (n = 1, 2, 3)$	338, 339
(RCH=CH ₂)Pt(PNO)Cl ₂ b	2, 72, 73, 75-78	Hg ₂ (PNO) ₄ (ClO ₄) ₂	291
(RC≡CR')Pt(PNO)Cl2 C	75	H ₆₂ (PNO) ₅ (SiF ₆)	291

a Representative examples.

[(Mo₆Cl₈)Cl₄L₂] complexes with the same N-oxides 320 , 321 (Table 12). Linear $\nu_{\text{Mo-O}}$ vs. σ_{PyNO} plots for these complexes show a trend of decrease of the $\nu_{\text{Mo-O}}$ frequency with increasing electron-withdrawing character of the substituent; $\nu_{\text{Nb-O}}$ and $\nu_{\text{M-Cl}}$ (M = Nb, Mo) are relatively insensitive to the effects of 4-substituents 320 . Linear plots were also obtained 320 when the electronic spectral bands of the Nb complexes were plotted vs. σ_{PyNO} . The Nb compounds are slightly paramagnetic 319 (μ_{eff} = 0.45–0.65 B.M.). Other Mo and W complexes reported are (cf. Table 12): $\text{MoO}_2\text{Cl}_2 \cdot 2\text{PNO}$ (ref. 322), Mo(NO)_2 -Cl₂(PNO)₂ (ref. 323), $[\text{Mo(O}_2)_2\text{O}](\text{PNO)}(\text{OH}_2)$, and $[\text{M(O}_2)_2\text{O}](\text{4-PicNO})$ (M = Mo, W) (ref. 324). Re¹ complexes of the type Re(CO)₃(PNO)₂X (X = Cl. Bt, I) are obtained by interaction 96 between PNO and Re(CO)₅X. 2-n-Nonylpyridine N-oxide has been utilized for the extraction of rhenium compounds from aqueous solutions 325 . RuX₂(CO)₃(PNO) complexes (X = Br, I) were prepared 326 by reaction between Ru(CO)₄X₂ and PNO. Interaction between 2, 6-LNO and Ru^{III}, Rh^{III} or Ir^{III} chlorides in acetone—ethanol leads to the immediate precipitation of crystalline products; the Ru and Rh complexes are of the types [Ru(2,6-LNO)₃Cl₃] and [Rh(2,6-LNO)₅Cl]Cl₂, respectively; the Ir complex is very unstable and has not been characterized as yet 179 .

(A)PtCl₂(L) (A = alkene, alkyne, styrene, vinyl ester or CO; L = N-oxide) complexes ¹⁹, 72–79, 267, 268, 327, 328 were reviewed in detail by Orchin and Schmidt² (see also Sects.

 $b R = CH_3, C_2H_5, C_{10}H_{21}, C_6H_5, C_6H_4-X (X = organic substituent), Y-CO_2 (Y = CH_3, C_2H_5, n-C_3H_7).$

 $CR = (CH_3)_3C$, $(CH_3)_2C(OH)$; $R' = CH_3$, $(CH_3)_2C(OH)$.

 $d X = BF_4$, PF_6 , AsF_6 , SbF_6 .

 $e \times = NO_3$, CN, CF₃COO, CCl₃COO.

C(i), (iii) and (vi) of the present review and Table 12). The crystal structure determination of (CO)PtCl₂(4-MeOPNO) revealed that the PtCCl₂O moiety is square planar and the N-oxide and carbonyl ligands are trans to one another ^{2,268}. The Pt-O-N angle is 120°, while the Pt-C-O grouping is almost linear ^{2,268} (178°). The Pt-O bond is essentially a signa bond with very little, if any, back-bonding ² (Pt-O bond length ²⁶⁸ 1.99 Å). $\nu_{\text{Pt-O}}$ is insensitive to the effects of substituents on the aromatic ring of the N-oxide ^{2,327}. Olefin-olefin exchange studies in Pt^{II}—olefin complexes ³²⁹, and their derivatives with pyridines ³³⁰ and pyridine N-oxides ⁷² have been reported ². Exchange between different N-oxides in (A)PtCl₂(N-oxide) complexes also occurs in solutions ^{76,331}, e.g.

$$(4-NO_2PNO)PtCl_2(C_6H_5CH=CH_2) + PNO = (PNO)PtCl_2(C_6H_5CH=CH_2) + 4-NO_2PNO$$
(17)

Pyridine and pyridine N-oxide ligands may be displaced from complexes of the above type by various solvent molecules (e.g. acetone, chloroform, acetonitrile) 328,330,332 ; the trans-labilizing ability of the unsaturated ligand decreases along the series 330,332 ethylene \gg trans-2-butene > cis-2-butene > CO. It should be noted, however, that caution is generally recommended in the interpretation of any type of exchange reaction with Pt^{II} complexes 2 ; in fact, complexes of the above types can be quite labile even in the absence of any added free ligand 330 , while the possibility of ready oxidation of Pt^{2+} to Pt^{4+} introduces an additional complication 2 . Pd^{II} analogs of the above complexes are considerably less stable and difficult to isolate; however, a number of (C_2H_4) $PdCl_2(N-oxide)$ complexes have been prepared 80 (Table 12). Other palladium and platinum N-oxide complexes reported are: $[Pd(4-EtOPNO)_2Cl_2]$ (ref. 142) and $[Pt(2.6-LNO)_3Cl_3]Cl$ (ref. 175).

AgClO₄ forms complexes of the type AgClO₄ · nL (n=2 or 3) with N-oxides (PNO, 2, 3- and 4-PicNO, 2, 6-LNO, 2-, 3- and 4-CNPNO, and 2-ethyl, 2-n-propyl- and 2-isopentyl-pyridine N-oxides ¹¹¹, ¹⁴², ¹⁴⁸, ²⁹⁰. The 2:1 complexes involve either a mono- or a binuclear (N-oxide-bridged) complex cation (vide supra) ¹⁴⁸, ²⁹⁰, while the 3:1 analogs were formulated as [AgL₂](ClO₄) · L, on the basis of the occurrence of ν_{N-O} as a doublet (suggestive of the presence of two chemically inequivalent sets of ligands) and the tendency of Agl to exhibit linear two-fold coordination ²⁹⁰ (Table 12). In Ag(2-CNPNO)₂(ClO₄) the ligand appears either to contain bridging N-oxide groups or to involve coordination of both the N-oxide oxygen and the nitrile group ¹⁴⁸. AgNO₃ · PNO (ref. 333) and [Ag(PNO)]⁺- [C(NO₂)₃] ⁻ (ref. 334) complexes were also reported.

Cd^{II} and Hg^{II} perchlorates and tetrafluoroborates yield $[ML_6]^{2+}$ hexacoordinated cationic complexes with N-oxides ^{109,111,142,173,181}. $[Hg(PNO)_6]X_2$ (X = PF₆, AsF₆, SbF₆) have also been prepared ¹⁸¹. Cd^{II} and Hg^{II} halides form complexes of the following types (L = N-oxide); X = Cl, Br, l): $[CdLX_2]_2$, $CdLX_2(OH_2)$, CdL_2I_2 , $Cd_3L_2CI_6$, $Cd_4L_2Cl_8$ (refs. 180, 297, 311, 335) and $[HgLX_2]_2$ (refs. 173, 180, 181, 195, 197, 269, 311, 336) (Table 12). Although the possibility of N-oxide bridging in the binuclear 1:1 complexes was discussed ¹⁸¹, the overall spectroscopic evidence is in favor of halogen-bridged structures. Crystal structure determinations of $[HgLCl_2]$ complexes (L = 3,5-Br₂PNO, QNO) established that these compounds are chlorine-bridged ^{270,337}. Other Cd^{II} complexes reported are: $[CdL(NCS)_2]_n$ (L = PNO, 2-, 3- and 4-PicNO, 2,6-LNO), $[Cd-(4-CNPNO)_2(NCS)_2]_n$, involving bridging thiocyanato ligands ¹⁹⁹, and $[Cd(2,6-LNO)_4-(ONO_2)_2]_n$, with monodentate nitrato ligands ¹⁵⁹. $[Hg(PNO)_2X_2]$ complexes (X = NO₃,

CF₃COO, CCl₃COO) involve coordinated polyanions, acting, most probably, as bidentate ligands; hence, Hg^{11} is probably hexacoordinated in these compounds 181 . Analogous compounds with X = CN, CF₃, C₂F₅, CF₃ · CHF, CF₃ · CH₂, C₆H₅, o-, m- and p-CF₃ · C₆H₄ are probably tetrahedral 181,338,339 . Fluoro-alkyl and fluoro-aryl mercurials may form 1:1, 1:2 and 1:3 complexes 338,339 with PNO. [HgL(SCN)₂] complexes (L = PNO, 2,6-LNO) appear to be binuclear, N-oxide-bridged, with S-bonded terminal thiocyanato ligands 159,181 . For Hg¹ the complexes $Hg_2(PNO)_4(ClO_4)_2$ and $Hg_2SiF_6 \cdot 5PNO$ were reported 291 .

(c) Complexes with lanthanide and actinide ions

Yill and LnIII perchlorates form complexes 113, 340 of the type $\{ML_8\}(ClO_4)_3$ with PNO. The complex cations are square antiprismatic 279 , 281 , 340 ; comparisons with analogous complexes of other ligands show that the stability order of $\{LnL_8\}^{3+}$ decreases along the series antipyrine > DMSO > PNO > N, N-dimethylfornamide 340 . 4-PicNO also forms $\{LnL_8\}^{3+}$ complexes $\{Ln=Pr, Nd, Sm, Eu, Gd, Dy\}^{341}$; hydrated complexes of the types $\{Sm(4\text{-PicNO})_7(OH_2)\}^{3+}$, $\{Eu(4\text{-PicNO})_6(OH_2)_2\}^{3+}$ and $\{Er(4\text{-PicNO})_7(OH_2)\}^{3+}$ were also isolated 341 . QNO forms 7:1 cationic complexes with Y^{10} and Ln^{10} ions $\{Ln=La\ to\ Yb\}$: a series of $\{M(QNO)_7\}\{Cr(NCS)_6\}$ complexes with these metal ions has been prepared 342 . $\{M(PNO)_4(NO_3)\}X_2$ ($X=NO_3$, ClO_4 , $\{B(C_6H_5)_4\}$) with Y^{10} and Ln^{10} ions most probably involve hexacoordinated complex cations with coordinated bidentate nitrate 343 . $LnCl_3$ salts form the following complexes 344 with QNO: $Ln(QNO)_3Cl_3 \cdot H_2O$ (M=Nd, Sm) and $Ln(QNO)_4Cl_3 \cdot H_2O$ (Ln=Eu, Gd, Tb, Dy, Ho, Yb). The 3:1 complexes are more thermally stable than the 4:1 complexes. The latter compounds lose two molecules of HCl at $50-100^{\circ}$ C, forming complexes of the corresponding Ln oxychlorides 344 ($LnOCl(QNO)_4$). Eu^{10} complexes of the above types, as well as adducts of N-oxides with Eu^{10} β -ketoenolato complexes are fluorescent $^{276-281}$ (vide supra; Sect. C(vi)).

ThIV and UO,2+ perchlorates form the following complexes 116, 121: Th(PNO)8(ClO₄)4. Th(QNO)6(ClO4)4 and UO2(PNO)5(ClO4)2. The shifts of the antisymmetric stretching frequency of the UO22+ ionic group, occurring upon interaction of equimolar amounts of uranyl compounds and a number of neutral or ionic ligands are as follows 345 (in cm⁻¹): bidentate oxalate, 65; bidentate sulfate, 63; bidentate nitrate, 37; pyridine, 34; antipyrine, 29; PNO, 29; bidentate perchlorate, 29; N, N-dimethylformamide, 27: tri-n-butylphosphate, 25; monodentate perchlorate, 22; di-n-butyl ether, 21; camphor, 19; H₂O, 19; CH₂CN, 16; nitromethane, 11. The trend observed in the case of the above shifts is that a ligand with a given Δv_{IIO_2} (as) shift will generally replace all ligands inducing lower Δv_{IIO_2} (as) shifts 345. ThIV chloride and nitrate complexes reported are: ThCl₄ · 2(2,6-LNO) (ref. 175), ThCl₄ · 2QNO · 2H₂O and Th(OH)₂(NO₃)₂ · 2QNO (ref. 298), UO₂(NO₃)₂ forms 1:2 complexes with a variety of aromatic N-oxides 298,346 . Th^{IV} and uranyl nitrates can be precipitated from aqueous solutions in the form of their N-oxide (e.g. 3-tert.-butyl-2,4,6-trimethylpyridine N-oxide) complexes 347. UO2Cl2 yields complexes 200, 210, 298, 346 of various stoichiometries with N-oxides, i.e. UO2Cl2 - 2L (L = PNO, 2- and 4-PicNO, 4-MeOPNO, 4-NO₂PNO, QNO), UO₂Cl₂·3PNO, UO₂Cl₂·4(4-CIPNO). 2:1 N-oxide complexes with UO2Br2 and UO2SO4 have also been reported 298,346. UO22+ \beta-ketoenolato complexes of the type $UO_2(\hat{L})_2$ (L = bidentate β -ketoenolato ligand) form 1:1 adducts with PNO and 4-substituted derivatives 209. Quite recently, adducts of bis-(dithiolato) UO2

complexes with PNO and other neutral ligands were reported 348 . Finally, conductivity measurements of $UO_2CI_2 \cdot 2L$ (L = QNO, IQNO) in methanol are considerably higher than those observed for anhydrous UO_2CI_2 or $UO_2CI_2 \cdot H_2O$ in the same medium 349 . The higher degree of dissociation in the N-oxide complexes has been attributed to weaker U-Cl bonds, resulting from the presence of the large QNO or IQNO molecules in the first coordination sphere of the U^{VI} ion 349 .

(d) Complexes with compounds of other elements

The following PNO complexes have been reported 47,48,111 for the perchlorates of metal ions belonging to Groups IA, IIA and IIIA of the Periodic Table: M(PNO)₄ClO₄ (M = Li, Na), M(PNO)₆(ClO₄)₂ (M = Mg, Ca, Sr), Ba(PNO)₄(ClO₄)₂, Al(PNO)₆(ClO₄)₃, $\Pi(PNO)_8(ClO_4)_3$, NaI • 2(2-PicNO) (vide supra; structure VI) has also been reported 56 . 4-EtOPNO forms a 4:1 complex 142 with Ca(ClO₄)₂; Mg(NCS)₂ • 2(2,6-LNO) has been formulated as $[(2,6-LNO)(SCN)_2Mg(2,6-LNO)_2Mg(NCS)_2(2,6-LNO)]$, i.e. dimeric, N-oxide-bridged, involving N-bonded isothiocyanato groups 159 . Bill compounds generally form complexes of the type BX₃ • L (X = H, F, Cl; L = PNO, 4-PicNO, QNO) $^{7.350}$. It is noteworthy that ν_{N-O} shifts of 18-44 cm⁻¹ were observed 350 in PNO complexes of this type, whereas with the corresponding 4-PicNO compounds the shifts of this band were $^{11}-^{11}$ cm⁻¹. A number of cationic complexes of the type $[(CH_3)_3NBH_2(L)]^+$ PF₆ (L = PNO and other neutral oxygen ligands) were also reported 351 . Indium trichloride forms a complex 352 of the type 10 In 10 Cl₃. Examples of N-oxide reactions with Grignard reagents (e.g. refs. 20, 95, 353) and lithium insertion at the aromatic ring positions, via an N-oxide-Buⁿ Li adduct intermediate 98 , have already been discussed in Sect. C(t).

Si^{IV} halides form 1:4 complexes 354 with PNO, i.e. $SiX_4 \cdot 4PNO$ (X = Cl, Br). $SnX_2 \cdot$ PNO (X = Cl, Br) and SnCl₂ · 2PNO adducts have been reported ¹⁸², ¹⁸³, ²⁷². For the former complex a monomeric structure 183, involving tricoordinated Sn II, and a binuclear, chlorine-bridged structure 182 have been proposed by different groups. The splitting of $v_{N=0}$ in SnCl₂ · 2PNO may suggest that one PNO group is outside the coordination sphere, but does not preclude a tetracoordinated system 183, 272. N-Oxide complexes with SnIV halides 16, 176, 203, 204, 355, 356 and organo-SnIV and PhIV salts 131, 201, 212, 266, 273, 357 have been studied to some extent (Table 13); SnX_A (X = F, Cl, Br, I) forms 1:2 adducts with aromatic amine N-oxides 16, 176, 203, 204, 355, 356 (vide supra, Sects. C(iii), (vi)). R3MX+L complexes (R = alkyl, aryl; X = Cl, Br, -NCS; M = Sn, Pb; L = N-oxide) are trigonal bipyramidal with planar R₃M moieties 201, 266, 357. (C₆H₅)₃SnCl complexes with pyridine and quinoline N-oxides have fungicidal, bactericidal and molluskicidal properties and low phytotoxicity 358, 359. R2SnX2 · 2L complexes 131, 201, 212, 266, 273, 357 involve two Noxide ligands trans to one another 131, 273, 357 (see also Sects. C(iii), (vi) and structure XI), and are hexacoordinated; in the case of 2,4,6-CNO a pentacoordinated adduct of the type (CH₃)₂SnCl₂ · L is stabilized; formation of the 1:2 adduct in this case is sterically hindered 201 . A series of 4-substituted pyridine N-oxides with R_3M substituents (R = CH_3 or C_2H_5 ; M = C, Si, Ge, Sn) was recently prepared 360,361 . Pb(PNO)₃(CiO₄)₂ was also reported 111. QNO and its derivatives react with Pb(CH₂COO)₄, forming N-acetoxycarbostyril, which is subsequently converted to N-hydroxycarbostyril, either on standing or by hydrolysis 362, 363.

TABLE 13

Tin and lead complexes with aromatic amine N-oxides a

Complex	Ref.
Sn(PNO)Cl ₂	182, 183
Sn(PNO) ₂ Cl ₂	183
Sn(PNO)(NCS) ₂	272
Sn(PNO) ₂ F ₄	204
Sn(PNO) ₂ Cl ₄	176
Sn(PNO)2B14	176
Sn(PNO)214	176
[Pb(PNO)3](ClO4)2	111
(CH ₃)SnBr ₃ ·2PNO	176
(CH ₃) ₂ SnCi ₂ · 2PNO	176
	201, 212
(CH ₃) ₂ SnCl ₂ · (Z,4,6-CNO)	201
(CH ₃) ₃ SnCl·PNO	176
(CH ₃) ₃ PbCl·PNO	201

a Representative examples

SbCl₅ forms a 1 1 adduct ³⁶⁴ with PNO, while PCl₃ · PNO (ref. 84) and PCl₅ · PNO (ref. 92) adducts were proposed as intermediates of reactions between PCl₃ or PCl₅ and PNO (vide supra, Sect. C(i)) Adducts of the types $SO_3 \cdot L$ (ref. 6), TeCl₄ · L (ref. 174) and TeCl₄ · 2L with aromatic N-oxides have been reported. Phenol, alcohol and halogen adducts of N-oxides were discussed in Sect. B(m) Inorganic and organic acids form 1 1 and 1 2 adducts with N-oxides, for which structures IV and V respectively were proposed ⁵⁶⁻⁵⁸ (Sect. B(m)) Examples of N-oxide (L) adducts of these types are [HL]X (X = Cl, Br, SbCl₆) (refs. 5, 56, 365, 366), [HL₂]X (X = Cl, Br, 1 (refs. 56, 57), SbCl₆, SbF₆, PF₆, AsF₆ (refs. 57, 58), BF₄ (ref. 57), ClO₄ (refs. 57, 367), p-CH₃C₆H₄SO₃ (ref. 57), AuCl₄, AuBr₄ (refs. 368, 369)), [LH]₂ [Mo₂O₁₁] H₂O (ref. 370) and CCl₁H_{3-n}COOH L (n = 1-3) ^{371, 372}. The crystal structure determination of CCl₃COOH·PNO revealed a rather short distance (2.41 Å) between the N-O oxygen atom and one of the carboxy oxygens ²⁸⁶. Finally, kaolmite (Al₄(Si₄O₁₀)(OH)₈) forms a PNO adduct, involving H-bonding from the hydroxyl hydrogens to the N-O oxygen ³⁷³

D METAL COMPLEXES OF AROMATIC AMINE N-OXIDE AND DIAMINE N. N-DIOXIDE CHELATING AGENTS

2-Substituted pyridine N-oxides and 2- or 8-substituted quinoline N-oxides (XII, XIII, XIV, respectively), involving substituents that can serve as donor sites, may act either as monodentate neutral ligands (e.g. $Y = NH_2$, CN), coordinating through the N-O oxygen, or as neutral (e.g. Y = CN) or anionic ($Y = O^-$, S^- , COO^- , NH^- , etc.) bidentate chelating agents. Other N-oxide and N, N-dioxide chelating agents, reportedly forming metal complexes (vide infra) are 1, 10-phenanthroline N-oxide, XV, 2, 2'-bipyridine N, N-dioxide, XVI, 1, 10-phenanthroline N, N-dioxide, XVII, and 2, 3-di(2-pyridine N-oxide) quinoxa-

line, XVIII. In contrast to the metal complexes of monodentate N-oxides, many of the metal chelates of these ligands can be isolated from aqueous solution

Picolinic acid N-oxide (PicANO-H, Y = COOH in XII) forms complexes with a variety of metal ions 213 , 215 , 374 – 379 (Table 14, see also Table 6 and Sect. $C(i\nu)$) Complexes 215 of the type $M(PicANO)_2 \cdot ^2H_2O$ (M = Mg, Mn, Fe, Co, Ni, Cu) are bis-chelates, XIX; $M(PicANO)_3$ (M = Mn, Fe) are either monomeric tris-chelates, XX, or polymers based upon the anhydrous form of structure XXI, which was proposed 215 for $M(PicANO)_3 \cdot H_2O$ (M = Cr, Co).

Other complexes reported by Lever et al. are. $Cu(PicANO)_2$ (monomeric, square planar chelate), $Zn(PicANO)_2 \cdot \frac{1}{2} H_2O$ (tetrahedral or pentacoordinated), $Ca(PicANO)_2(probably polynuclear)$, $Fe(PicANO)_3(PicANO-H)$ ($\mu_{eff} = 5.98 \text{ B.M.}$), $Fe(PicANO)_2OMe$ ($\mu_{eff} = 5.09 \text{ B.M.}$), $HFe(PicANO)_4$, during oxidation of Fe^{II} , Co^{II} and Ni^{II} —PicANO complexes by chlorine or bromine, compounds of the types $FeCl_2(PicANO)$, CoCl(PicANO), $Co-(OOCCH_3)(PicANO)Br$ ($\mu_{eff} = 4.99 \text{ B.M.}$), and $Ni(OOCCH_3)(PicANO)Br$ ($\mu_{eff} = 3.90 \text{ B.M.}$) were isolated 215 Recently, the magnetic properties of $Fe(PicANO)_2 \cdot 2H_2O$ in the $80-300^\circ$ K region were reported 378 . The patterns of the variation in stability constants with increasing atomic number led to the conclusion that PicANO acts as a bidentate ligand in its Ln^{III} (La to Lu) complexes 375 . However, the ratios of stepwise stability constants for the same complexes were suggestive of coordination of PicANO as a monodentate ligand 376 . A series of X_2 BL ($X = C_6H_5$ or F, L = PicANO, 2-carboxyquinoline N-oxide, 2-OMePNO, 8-OQNO) complexes involve chelation of the ligand; 8-ethoxy-carbonylaminoquinoline N-oxide (LH) forms the (C_6H_5) $_2$ BL chelate, but its interaction with BF_3 leads to the formation of the adduct $BF_3 \cdot LH$, in which the ligand is neutral, coordinating

Some metal chelates of aromatic anime N-oxides and N, N droxides

TABLE 14

	(BM)	(cu _)	of interest (cm ⁻¹)	
PicANOII Ca(PkaANO) ₂ Mg(PkANO) ₂ -2H ₂ O) , , , , , , , , , , , , , , , , , , ,	1290, 1259 1280, 1238 1277, 1232	1626, 1393 (9000) 1634, 1376 (9000) 1634, 1387 (9000)	215 215 215
Mn (PicANO)2 · 2H2O Fe(PicANO)2 · 2H2O Co (PicANO)2 · 2H2O Ni(PicANO)2 · 2H2O Cu (PicANO)2 · 2H2O Zn (PicANO)2 · 2H2O	5.98 5.36 3.23 1.88	1282 1276, 1229 1277, 1230 1272, 1232 1282, 1238	1626, 1383 (9000) 1615, 1379 (9000) 1623, 1385 (9000) 1616, 1389 (9000) 1634, 1380 (9000) 1618, 1381 (9000)	215 215 215 215 215 215
Cu (PicANO) ₂ Be(PicANO) ₂ Cr (PicANO) ₃ · H ₂ O Mn(PicANO) ₃ Co (PicANO) ₃ · H ₂ O Fe(PicANO) ₃ · H ₂ O Fe(PicANO) ₃ · H ₂ O	1.87 3.77 5.00 0 5.88	1259, 1230 1261, 1247 1279 $^{\prime}$, 1267, 1241, 1232 1276sh, 1266, 1241 1277th $^{\prime}$, 1267, 1245 1271, 1261, 1238 1115, 1090 or ~ 1248 $^{\prime}$	1650, 1344 (vC00) 1658, 1335 (vC00) 1647, 1336 (vC00) 1639, 1336 (vC00) 1639, 1357, 1340 (vC00) 1634, 1333 (vC00) 1142	_
Cr (PTNO) ₃ - 1½H ₂ O Mn (PTNO) ₂ - 11 ₂ O Fe(PTNO) ₃ - 211 ₂ O N ₁ (PTNO) ₂ Cu (PTNO) ₂ Zn (PTNO) ₂ Cd (PTNO) ₂ Cd (PTNO) ₂ Cd (PTNO) ₂ Cd (PTNO) ₃ - 11 ₂ O Sn (PTNO) ₄ - 11 ₂ O	3.72 5.72 5.88-6.18 0.34 1.68	1080 1075 1075 1080 1080 1080 1085 1200 1205, 1195	1155, 1130 (#C=S) 1150, 1135 (#C=S) 1150, 1135 (#C=S) 1150, 1130 (#C=S) 1150, 1130 (#C=S) 1150, 1125 (#C=S) 1150, 1125 (#C=S) 1150, 1125 (#C=S) 1355 (#Sn=O) 336 (#Sn=O)	386 386 386 386 386 386 274 274 274

TABLE 14 (continued)

Compound	(BM)	(cm ⁻¹)	Other IR bands of interest (cm ⁻¹)	Ref
SnF ₂ (PTNO) ₂ SnC ₂ (PTNO) ₂ SnB ₁₂ (PTNO) ₂ Sni ₂ (PTNO) ₂ (C ₆ H ₅) ₂ Sn(NCS)(PTNO) BuPO ₂ Sc(BiPO ₂) ₃ (CiO ₄) ₃ VO(BiPO ₂) ₂ (CiO ₄) ₂	1 64	1190 1186 1186 1186 1205 1262, 1255 1225, 1210 1264, 1246	410, 387 (vsn-0) 402, 382 (vsn-0) 397, 373 (vsn-0) 387, 371 (vsn-0) 390 (vsn-0)	274 274 274 274 274 407 120
Cr (BiPO ₂) ₃ (ClO ₄) ₃ ·211 ₂ O Cr (BiPO ₂) ₃ (ClO ₄) ₃ ·211 ₂ O Mn (BiPO ₂) ₃ (ClO ₄) ₃ ·211 ₂ O Fe (BiPO ₂) ₃ (ClO ₄) ₃ ·211 ₂ O Co (BiPO ₂) ₃ (ClO ₄) ₃ ·211 ₂ O Cu (BiPO ₂) ₃ (ClO ₄) ₂ ·211 ₂ O Cu (BiPO ₂) ₃ (ClO ₄) ₂ ·211 ₂ O Cu (BiPO ₂) ₃ (ClO ₄) ₂ ·211 ₂ O Cd (BiPO ₂) ₃ (ClO ₄) ₂ ·211 ₂ O	3.70 4.97 6.34 6.13 4.72 2.10	1215, 1210, 1199 6 1235, 1225, 1210 1226, 1202 1220, 1209 1250, 1235, 1210 1230, 1211	357 (*M0) 408, 377 (*M0) 362 (*M0) 370, 351 (*M0) 392 (*M0) 355, 340 (*M0) 368, 332 (*M0)	407 406, 407 406, 407 406, 407 406, 407 406, 407 406, 407
Y (BiPO ₂) ₄ (ClO ₄) ₃ Ln(BiPO ₂) ₄ (ClO ₄) ₃ (Ln = La-Yb) Ce (BiPO ₂) ₃ (NO ₃) ₂ (ClO ₄) ₁ Th(BiPO ₂) ₃ (ClO ₄) ₄ UO ₄ (BiPO ₂) ₃ (ClO ₄) ₂ ZrG (BiPO ₂) ₃ (ClO ₄) ₂ · 2H ₂ O Mo ₂ O ₃ (BiPO ₂) ₂ Cl ₂ · 2H ₂ O Mo(NO) ₂ (BiPO ₂) ₄ Cl ₂ · 2H ₂ O Mo(NO) ₂ (BiPO ₂) ₄ Cl ₂ · 2H ₂ O Re(CO) ₃ (BiPO ₂) ₇ (X = Cl, Br, I)	ບ ພະບຸດ 7 4. 8 33	1252, 1232, 1209 1264-1249, 1238-1228, 1215-1204 1260, 1239, 1210 1267, 1232 1260, 1218 1261, 1225 1264, 1256 1261, 1230 1215, 1199	338 (M0) 345-332 (M0) 355 (M0) 361 (M0) 388 (M0) 394 (M0) 404 (M0)	410 410 409 409 409 409 323 36

A Non-bonded N=O group b The v_N=O of 1-hydroxypyridine-2-thione occurs at 1115, 1090 cm⁻¹ (ref 383). Robinson has based his v_N=O assignments on the shifts of these bands³⁸⁶ The v_N=O of the 2-pyridine thiol N-oxide tautomer has not been reported, Petridis et al., made v_N=O assignments, by assuming that the v_N=O of the thiol tautomer is close to that of 2-benzyllhiopyridine N-oxide ²⁷⁴ which occurs at 1248 cm⁻¹
 A R. Katriticky and A R. Hande, L. Chem. See, London, 10502 21053, C. May received.

through the N-O oxygen 379a . Other PicANO complexes reported are 374 . Be(PicANO)₂, MO₂(PicANO)₂ · 2H₂O (M = U, Pu), Zr(PicANO)(OH)₃. The 1 2 metal-to-ligand ratio in the UO₂²⁺ complex was also determined by physicochemical studies 377 .

2-Aminopyridine N-oxide (LH) metal complexes of the type $\{M(LH)_6\}(ClO_4)_2$ (M = Mn, Fe, Co, Ni, Zn, Mg) and $\{M(LH)_4\}(ClO_4)_2$ (M = Cu, Ba), involving monodentate neutral ligands, coordinated through the N-O oxygen, were isolated during interaction of ligand and salt in methanol ³⁸⁰. In highly alkaline aqueous media, the same ligand loses one proton, forming an anion, which can coordinate as a bidentate ligand to Cu^{II} and Fe^{III} (XXII), with other 3d metal ions hydrolysis occurs more easily than formation of metal chelates of the type shown in XXII ³⁸⁰.

Adenosine N-oxide behaves in a similar manner, forming 1.1 chelates, XXIII, with divalent 3d metal ions (M = Mn to Zn) in alkaline media ^{381a} However, adenine N-oxide forms chelates with the same metal ions, involving coordination of the nitrogen of the amino group and one nitrogen of the unidazole ring (in position 7) (XXIV), the N-O oxygen is not coordinated in the latter complexes ³⁸¹ Adenosine-5'-monophosphate-N(1)-oxide forms Cu^{II} complexes involving coordination of the N-O oxygen, with other M^{II} ions (Mg, Ca, Ba, Mn, Co, Ni, Zn), coordination through this oxygen occurs, in solution, at high pH, while at neutral or weakly acid pH this ligand coordinates exclusively through the phosphate group to the above metal ions ^{382a}. Similar studies with inosine-N(1)-oxide and its 5'-monophosphate derivative established that the latter ligand coordinates mainly through the N-O oxygen to divalent 3d metal ions, whereas in the case of alkaline earth metal ions, an equilibrium between NO- and phosphato-bonded species exists in solution ^{382b}

2-Hydroxypyridine N-oxide (2-HOPNO) and 2-pyridinethiol N-oxide (PTNO-H) (XXV, Z = 0, S) exist predominantly in their tautomeric forms of 1-hydroxypyrid-2-one and 1-hydroxypyridine-2-thione (XXVI, Z = 0, S), respectively ³⁸³ (the 2-aminopyridine N-oxide exists predominantly in the N-oxide rather than the 1-hydroxypyridone-2-imine form ³⁸³)

Both 2-HOPNO and PTNO-H (omadine) reportedly form metal chelates of type XXVII 271 , 274 , 275 , $^{384-391}$ (Table 14) Chelates of this type exhibit negative v_{N-O} shifts 274 , 386 ,

 $\nu_{C=S}$ in M(PTNO), complexes did not diminish in intensity or approximate position, as would be expected, although, in certain cases, the absorption was split into two bands 386. 2-OPNO (L) chelates of the types $[SiL_3]X(X = Cl, FeCl_4)$, $[SiL_3]_2[SnCl_6]$, $[AlL_3]$, [FeL3] and [SnL312 [SnCl6] have been reported 384,391. The Sity complexes involve an octahedral complex cation 384, which was partially resolved into its optical enantiomers by treatment with disodium (-)-dibenzoyl-L-tartrate ³⁹¹. Zn^{II} complexes of this ligand may be used as antifungal agents 392. An early paper 389 reported the preparation of various 2-pyridine-thiolate N-oxide M(PTNO), complexes (M = NaI, FeII, FeIII, Coli, NiII, Culi, Agl, Aulii, ZnII, CdII, HgI, HgII, PbII, SbIII, AsIII, BiIII) Polarographic studies of some of these complexes 388 and determination of formation constants of divalent 3d metal ion chelates with 2-OPNO and PTNO 385 were later reported. The following PTNO(L) metal chelates have been isolated and characterized CrL3 · 1 5H2O, NaL, KL, MnL2 · H₂O, FeL₃, CoL₃ · 2H₂O, NiL₂, CuL₂, ZnL₂, CdL₂, ZrL₄ · H₂O, HgL₂ (ref. 386), R_2 SnL(R = n-C₄H₉, C₆H₅), SnX₂L(X = F, Cl, Br, I), SnL₄, (C₆H₅)₂Sn(NCS)L (ref 274). RSnClL₂ (R = n-C₄H₉, C₆H₅) (ref 275) Mossbauer studies of FeL₃ (ref 271) and the Sn^{IV} complexes ²⁷⁴, ²⁷⁵ have already been mentioned (Sect. C(ν)). NiL₂ (μ _{eff} = 0 34 B.M.) and CuL_2 are square planar, $MnL_2 \cdot H_2O$ is tetrahedral ($\mu_{eff} = 5.72 \text{ B M}$, yellowgreen color) and the Crill, Felli and Colli chelates are octahedral, a Dq value of 1884 cm⁻¹ was derived from the electronic spectrum of $CoL_3 \cdot 2H_2O(\mu_{eff} = 0.40 \text{ B M.})^{386}$. PTNHO³⁸⁷ and 4-methylpyridine-2-thiol N-oxide 390 have been used for the analytical determination of Fell The Fell chelates with both these ligands can be used for the selective differential absorptiometric determination 390 of HgII. M(PTNO), complexes have found application as components of fungicides and bactericides and as repellents, reducing deerbrowsing 393 The Nal and ZnII complexes of 2-quinolinethiol N-oxide are used in antidandruff shampoos 394. Coll, Nill, Cull and CdII chelates of 1-hydroxypyrazole-2-oxide 395a and Cull complexes of oxazoline oxide derivatives 395b have also been reported

8-Quinolinol N-oxide (oxine N-oxide) and substituted derivatives have been extensively used for the extraction and analytical determination of various metal ions (e.g. Mn²⁺, Fe³⁺, Co²⁺, Cu²⁺, Zn²⁺, Al³⁺, Ln³⁺, Ru³⁺, Ir⁴⁺, Ce⁴⁺, U⁶⁺)³⁹⁶⁻⁴⁰⁰ The stability constants of 8-quinolinol N-oxide complexes are generally smaller than those of the corresponding 8-quinolinol complexes ⁴⁰⁰ Spectrophotometric, stability constant and other investigations of metal complexes of 8-quinolinol N-oxide (LH) and substituted derivatives (e.g. 5,7-dichloro-8-quinolinol N-oxide (L'H)) of various types (i.e. NiL'₂, CuL₂, PdL₂ [MLCl₄] (5-n)-(M=Ru^{III}, Rh^{III}, Os^{IV}, Ir^{IV}, Pt^{IV}, n = 3 or 4), etc.), led to the assignment of structures invariably involving chelating L or L' ligands to these compounds ^{396, 399, 400-402}. Although many metal ions can be precipitated with 8-quinolinol N-oxide (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Zn²⁺, Cd²⁺, Co²⁺, Ce⁴⁺, UO₂²⁺, Tl⁺, etc.) ³⁹⁸, the only 3d metal complex obtained in crystalline form and characterized is VO(8-OQNO)₂ (µ_{eff} = 1 77 B.M) ⁴⁰³. Reaction of 8-quinolinol N-oxide and 2-n-butoxy-1,3,2-dioxaborole in CH₂Cl₂ results in the precipitation of the tetraoxa-azaspiroborate, XXVIII ⁴⁰⁴.

I-Hydroxyphenazine-N, N-dioxide reportedly behaves in a similar manner to 8-quinolinol N-oxide, forming Cu^{II} chelates by coordination of one of the NO oxygens and the oxygen of the hydroxyl group^{401b}.

2,2'-Bipyridine N, N-dioxide (XVI, BiPO2) acts as a neutral bidentate ligand, forming metal complexes involving seven-membered chelate rings XXIX 96, 120, 222, 320, 323, 405-413 (Table 14) Metal complexes of the general types $[M(BiPO_2)_3]X_m$ (M = Al³⁺, Sc³⁺, Cr³⁺, Mn^{2+} , Mn^{3+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , X = Br, I, ClO_4 , NO_3 , S_2O_8 , $PtCl_4$, n = 0.5-3) 120,405-408, $[M(B_1PO_2)_2]X_n$ $(M = Co^{2+}, X = Cl, Cu^{2+}, X = PtCl_4, Ag^*,$ Pb²⁺, X = ClO₄)⁴⁰⁶⁻⁴⁰⁸ are generally characterized by bidentate BiPO₂ ligands. $\nu_{M=O}$ values are in agreement with the Irving-Williams series, i.e. they vary in the following order 407 for 3d metal tons $Mn^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$ Stereochemical considerations and infrared studies suggest that the seven-membered chelate rings involve a staggered (gauche) configuration of the pyridine rings 406, 407. NMR data for [M(BiPO₂)₃]-[PF6]2 (M = Co, Ni) complexes (contact and dipolar shifts and the corresponding geometrical factors) were best interpreted 413 by assuming a M-O distance of 2 20 Å and an O-M-O angle of 85°, the geometrical factors obtained in this manner correspond to a staggered configuration for the chelated BiPO₂ ligand, involving an angle of 67° between the planes of the two aromatic rings and a M-O-N angle of 115° Two out of eight possible optical isomers appear to be present in appreciable amounts in the $[M(BiPO_2)_3]^{2+}$ (M = Co, Ni) cationic complexes, these are the $\triangle ddd$ ($\equiv Alll$) and the $\triangle lll$ ($\equiv Addd$) isomers⁴¹³ Other BiPO₂ chelates with transition metal ions reported are VCl₄ · L (L = BiPO₂, 1, 10phenanthroline N, N-dioxide, XVII, $\mu_{eff} = 1.50$ and 1.60 B.M., respectively) ²²², [VO- $(B_1PO_2)_2$ (ClO₄), $(\mu_{eff} = 1.63 \text{ B M})$, $[Z_1PO_2]_3$ (ClO₄), (ref. 409), $[(Nb_6Cl_{12})Cl_2]_2$ $(B_1PO_2)_2$ (ref 320), $[Mo_2O_4Cl_2(B_1PO_2)_2] \cdot 2H_2O$, $[Mo_2O_3Cl(B_1PO_2)_2] \cdot 2H_2O$ ($\mu_{eff} =$ 1.23 and 1.48 B M., respectively)⁴⁰⁹, Mo(NO)₂(BiPO₂)Cl₂ (ref 323) and Re(CO)₃- $(BiPO_2)X$ (X = Cl, Br, I) 96. YIII and LnIII form chelates of the type [M(BiPO_2)4](ClO_4)3 (M = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) (refs. 410, 411). The Eu^{HI} and Tb^{III} complexes of this type are fluorescent, and their fluorescence spectra in solution were reported 411. IR and conductance data 410 indicate that the metal-ligand bond is weaker in the lanthanide than in the corresponding transition metal chelates with BiPO2 A CeIV complex of the type [Ce(BiPO₂)₃(NO₃)₂](ClO₄)₂ was recently prepared ⁴¹¹ Chelates of the actimide ions with BiPO2 have also been reported, viz [Th(BiPO2)4](ClO4)4, [UO2- $(B_1PO_2)_2$ (ClO₄)₂ (ref. 409), $UO_2(NO_3)_2(B_1PO_2)$, and $PuO_2Cl_2(B_1PO_2 \cdot HCl)_2$ (ref. 412) Finally, BiPO2 forms 1 I adducts with the following inorganic acids HClO4, DClO4, HCl, HBr, HSbCl₆ (ref 414) Other N, N-dioxides, reportedly forming metal complexes, are 4, 4'-dinitro (or dihydroxy)-glycosine-3,3'-dioxide and indigo-3, 3'-dioxide (2, 2'-dibenzdimidazyl-3, 3'-dioxide)415 2, 2'-Bipyridine-N-oxide complexes have not been reported, but a series of $ML_2Cl_2 \cdot nH_2O$ (M = Co, Ni, Cu, n = 0, 0.5 and 2, respectively) with 1, 10-phenanthroline N-oxide, XV, were prepared 416 These complexes are dissociated in water to regenerate the N-oxide and the hydrated metal ion 416, no characterization studies were reported for these compounds

Quite recently, a number of Co^{II}, Ni^{II} and Cu^{II} halide complexes with the ligand 2,3-di(2-pyridine N-oxide) quinoxaline (XVIII, DPNOQ) were synthesized 417 (Table 14). DPNOQ can act as a monodentate, mono-bidentate or bis-bidentate (bridging) ligand. In the latter two cases, six-membered chelate rings are formed by coordination of one N-O

oxygen and one nitrogen of the quinoxaline ring to the metal ion. Monomeric tetrahedral structures, involving mono-bidentate DPNOQ were assigned to $CoX_2(DPQNO) \cdot nH_2O$ (X = Cl, Br, I, n = 1-1 5), complexes of the type $N_1X_2(DPNOQ)_2 \cdot H_2O$ (X = Br, I) are monomeric, octahedral, and also contain mono-bidentate ligands ⁴¹⁷. Oligomeric N_1Cl_2 complexes of the types $N_13Cl_6(DPNOQ)_4 \cdot 4H_2O$ and $N_15Cl_{10}(DPNOQ)_4 \cdot 4H_2O$ contain bridging bis-bidentate DPNOQ ligand molecules, coordination of terminal mono-bidentate DPNOQ groups was proposed for the former complex, while the formulation of the latter complex involves only bridging DPNOQ ligands and terminal aquo and chloro groups $CuX_2(DPNOQ)$ complexes are probably hexacoordinated, polynuclear, DPNOQ-bridged A complex in which this ligand is monodentate ⁴¹⁷ is the adduct $ICl \cdot DPNOQ$ Finally, 2-CNPNO acts as a monodentate ligand in $[M(2-CNPNO)_6](ClO_4)_2$ (M = Co, N_1), while for $Ag(2-CNPNO)_2(ClO_4)$ the possibility of chelation of the ligand was discussed ¹⁴⁸ (vide supra, Sect. C(viu)(b))

E METAL COMPLEXES OF ALIPHATIC AMINE N-OXIDES AND SECONDARY AMINE NITROXIDE FREE RADICALS

The present section gives a brief account of the metal complexes reported for aliphatic amine N-oxides and secondary amine nitroxide free radicals. Trimethylamine N-oxide (TMNO) forms complexes with a variety of transition metal salts 18, 100, 110, 293, 418-425. coordination occurring through the N-O oxygen Complexes of the following types were reported $[M(TMNO)_4](ClO_4)_2$ (M = Mn, Co, Ni, Cu, Zn) 18, 100, 418-422, $[M(TMNO)_6]$ - $(CiO_4)_3$ (M = Sc, Cr) 100,293 , [M(TMNO)₂X₂] (M = Mn, Co, Zn, Cd; X = Cl, Br, I, NCS, NO₃) 18,110,419,420,422,423 , [Co(TMNO)₃I]I (ref 18), [Co(TMNO)₄]X₂ (X = NO₃ (ref 110), BF₄, ClO₄, Br, I, CH₃C₆H₄SO₃ (tosylate))⁴²¹, [M(TMNO)X₂] (M = Cd, Hg, X = Cl, Br, I)⁴²³ and M(TMNO)₂Cl₄ (M = T₁, Z₇)^{422,424} TMNO behaves in a manner similar to sterically hindered aromatic amine N-oxides (e.g. 2,6-LNO 145, ANO) 149, in that it forms [ML₄]²⁺ and [ML₆]³⁺ carronic complexes However, the [M(TMNO)₄]²⁺ complexes are tetrahedral, with the exception of the Cu^{II} complex, which is probably distorted square-planar (D_{2d} symmetry) 100, whereas the [M(2,6-LNO)₄]²⁺ complexes are square-planar 145 Thus, TMNO resembles the corresponding phosphine and arsine oxides 101, 102, 135-139 in that it favors the stabilization of tetrahedral cationic complexes Square pyramidal $[ML_5]^{2+}$ and $[ML_4(OClO_3)]^+$ cationic 3d metal complexes with trialkyl- and tri-arylphosphine oxides have been reported 136, 140,426. Nevertheless, attempts at the isolation of [M(TMNO);](ClO₄), were unsuccessful, although solutions of [M-(TMNO)4](ClO4)2 (M = Co, Ni) containing excess ligand exhibit electronic spectra indicating the attainment of a coordination higher than four 140 Conclusions regarding the stereochemistry of [M(TMNO)₅]²⁺ would be of considerable interest, since [ML₅]²⁺ cations are square pyramidal for L = phosphine or arsine oxide 136, 140, 426 and trigonal bipyramidal for L = aromatic amine N-oxide (2-PicNO)^{123,133} [Co(TMNO)₂X₂] (X = Cl. Br. I, NCS) complexes are pseudo-tetrahedral in solution, but pentacoordinated (most probably TMNO-bridged and dimeric) in the solid state 419,420. The paramagnetic metal ion TMNO complexes mentioned above are generally of the high-spin type. Other metal complexes of TMNO reported are BX₃ · TMNO (X = F, Cl, Br) 11, 15, 424, 427, AIX₃ · TMNO

(X = Cl, Br), $GaCl_3 \cdot TMNO$, $InCl_3 \cdot 2TMNO$ (ref 424), $(CH_3)_3M \cdot TMNO$ (M = Al, Ga, In) 428 , SiF₄ · 2TMNO, SiX₄ · 4TMNO (X = Cl, Br) 11,354 , GeCl₄ · 2TMNO, GeCl₄ · 4TMNO (ref. 424), $SnX_4 \cdot 2TMNO(X = F, Cl, Br)^{422,424}$, $PCl_3 \cdot nTMNO(ref. 11)$, $SO_2 \cdot TMNO$ (refs 10, 13), SO₃ · TMNO (refs. 13, 15). TMNO · HCl and TMNO · 2H₂O have also been studied 429,430: Triethyl- and tripropylamine N-oxides (TENO, TPNO, respectively) form $[CoL_2X_2]$ (X = Cl, Br, I, NCS) and $[CoL_4](ClO_4)_2$ complexes 422,425. TENO complexes of these types form the pentacoordinated complex [Co(TENO),]2+ in solution and in the presence of excess ligand, treatment of TPNO complexes with excess ligand does not lead to the formation of species with a coordination number higher than four. ([Co(TPNO)X₂] forms the [Co(TPNO)₄]²⁺ cation, under these conditions ⁴²⁵. Rare earth complexes of the type $[M(TENO)_6][Cr(NCS)_6] \cdot 2H_2O$ (M = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) have also been reported 431 N,N-Dimethylethylenediamine N-oxide ((CH₃)₂N(O)-CH₂CH₂NH₂) acts as a bidentate chelating agent, coordinating through one oxygen and one nitrogen atom, $[ML_3](ClO_4)_{2 \text{ or } 3}$ $(M = Fe^{3+}, Co^{3+}, Ni^{2+})$, $[ML_2](ClO_4)_2$ $(M = Cu, Cu)_{2 \text{ or } 3}$ Zn), MLX_2 (M = Mn, Co, Cu, Zn; X = Cl, I), $N_1LCl_2 \cdot 2H_2O$, $MLCl_2 \cdot 2HCl$ (M = Mn, Pd, Cd) and L. 2HCl complexes of this ligand have been prepared 432. Complexes with other R_3NO ligands reported are $C_6H_5MgBr \cdot C_6H_5(CH_3)_2$ (ref 12), $ZnBr_2 \cdot 2C_6H_5(C_6H_5CH_3)_2$ ≃CHCH=)NO (ref. 14), and a series of F₃NO adducts with BF₃, AsF₅ and SbF₅ (ref. 433).

The nitroxides of secondary amines are free radicals; properly substituted radicals of this type are stable substances 434-436 (e.g. di-tert-butylnitroxide, XXX, DBNO and 2, 2, 6, 6-tetramethylpiperidine nitroxide, XXXI, TMPNO.)

These compounds have found wide application as spin labels for probing biomolecular structure 437, interest in their coordination compounds has started developing in recent years. The donor properties of TMPNO · towards various phenois and alcohols were recently investigated 438; protonation of TMPNO , not involving destruction of the paramagnetic center, has been reported 439 The 1 I complexes of non-transition metal ions with nitroxide free radicals (i.e. AlCl₃ with DBNO and TMPNO (ref. 105), and MX₃ (M = Al, Ga, X = Cl, Br, I) with 2,2,6,6-tetramethyl-4-pyridone nitroxide 103) are paramagnetic 103,105 . Solution EPR spectra of the free radicals consist of three lines produced by interaction of the unpaired electron with a single 14N nucleus. The AlIII complexes exhibit 18-line EPR spectra in which each of the three ¹⁴N lines is split into six by interaction with a single ²⁷ At nucleus ¹⁰⁵ In the case of Ga^{III} complexes, 24 lines are observed in their EPR spectra, this is due to interactions between ¹⁴N and ⁶⁹Ga or ⁷¹Ga nuclei ¹⁰³. In complexes with paramagnetic metal ions, spin—spin interactions between the figand and metal ions unpaired electrons occur, as indicated by magnetic susceptibility and EPR studies 104, 105, 440-444. [Co(DBNO·)₂X₂] (X = Cl, Br, I) complexes were initially found ¹⁰⁴ to exhibit μ_{eff} of ca 2.7 B M.; recently, $\mu_{\rm eff}$ of the CoBr₂ complex was redetermined 440 and found to be 4.23 B.M. The complexes are tetrahedral and their electronic spectra establish that Co is in the

+2 oxidation state 440. The interaction between ligand and metal ion unpaired electrons is obvious, since the theoretical $\mu_{\rm eff}$ value 440 for a system containing three unpaired electrons on cobalt, which are not interacting with one unpaired electron on each ligand, is 4 8 B M. The solid-state EPR spectra of these complexes are unusual for tetrahedral Co^{II}. It resembles an $S = \frac{1}{2}$ system with g values 440 comparable to that expected for tetrahedral Coll. Beck et al 104 assumed a total spin of $S = \frac{1}{2}$, but Brown et al. 440 concluded that $S \neq \frac{1}{2}$. Similar magnetic properties and EPR spectra were reported for a number of 3d metal perchlorate – TMPNO · complexes. [Fe(TMPNO ·)₂(ClO₄)₂]_x ($\mu_{\text{eff}} = 3.47$ B M.), [Co- $(TMPNO \cdot)(ClO_4)_2]_x$ ($\mu_{eff} = 4.58 \text{ B M}$), $[N_1(TMPNO \cdot)(ClO_4)_2]_x$ ($\mu_{eff} = 3.63 \text{ B M.}$), $[Zn(TMPNO \cdot)_2(ClO_4)_2]_x$ ($\mu_{eff} = 2.06 \text{ B M}$) 106 These compounds are most probably binuclear, the presence of bridging perchlorato ligands was considered as more probable than that of bridging TMPNO, in view of the steric features of the later ligand 106 Bis (β-ketoenolato)—Cu^{II} chelates form 1 1 adducts with DBNO · and TMPNO · exhibiting low magnetic moments (1 05 B M) 441,444. The Cull salt of the 2,2,5,5tetramethyl-3-carboxypyrroline nitroxide radical does not exhibit an EPR signal442. A labile Cu(ClO₄)₂ complex with TMPNO was isolated but not characterized, the reaction was carried out in triethyl orthoformate, and this complex was attacked by the ethanot produced, forming 2,2,6,6-tetramethylpiperidinium perchlorate and a mixture of elemental copper and copper oxides 445 Addition of 3d metal acetylacetonates (VO2+, Cr3+, Mn3+, Fe3+, Co2+, Cu2+) to solutions of DBNO or TMPNO results in a broadening of the lines of the EPR and NMR spectra of the free radical, the line widths depend on the number of spins on the metal and the geometry of the complexes⁴⁴³. A number of diamagnetic Pd^{I} complexes of the type $[Pd(DBNO\cdot)X]_{2}$ (X = Cl, Br) reported, are binuclear halogen-bridged ¹⁰⁷ The complexes mentioned above involve, with the possible exception of CuL₂ (L = 2,2,5,5-tetramethyl-3-carboxypyrroline nitroxide)⁴⁴² coordination of the nitroxide group to the nietal ion. Coordination through the N-O oxygen is suggested by negative v_{N-Q} frequency shifts $^{104, 106, 445}$ and the fact that the nitrogen hyperfine splittings in the EPR spectra of diamagnetic metal ion-free radical complexes are increased relative to the splittings of the uncomplexed free radicals 441 The possibility of π -bonding of the type

$$\int_{N} \to M^{n+}$$

was also advanced 103 Complexes of nitroxide free radicals, not involving coordination of the nitroxide group, are also known. For example, during spin-labeling of vitamin B_{12} it was suggested that TMPNO- and its 4-hydroxy derivative coordinates to Co^{III} through the nitroxide group, while 4-bromoacetamido-2,2,6,6-tetramethylpiperidine nitroxide radical coordinates through the carbon of the $BrCH_2$ group 446 , and in $Pd(porphyrexide)_2$ - Cl_2 complexes, the bidentate ligands coordinate through two imino group nitrogens 447

REFERENCES

```
1 R G Garvey, J.H. Netson and R O Ragsdale, Coord, Chem Rev., 3 (1968) 375
 2 M. Orchin and P.J. Schmidt, Coord Chem. Rev., 3 (1968) 345.
 3 T Kubota, J Amer Chem. Soc., 87 (1965) 458.
 4 S D. Ross, D J Kelley and M M Labes, J Amer Chem. Soc., 78 (1956) 3625
 5 J Meisenheimer, Ber Deut Chem. Ges., 59 (1926) 1848
 6 P Baumgarten and H Erbe, Ber Deut Chem. Ges., 71 (1938) 2603
 7 H Tanida, Yakugaku Zasshi, 78 (1958) 608
 8 W Hieber and A Lipp, Chem. Ber., 92 (1959) 2085
 9 A Heller, Buil Res Counc. Isr., Sect. A. 9 (1960) 245
10 A B. Burg, J Amer Chem. Soc., 65 (1943) 1629
11 A B Burg and J H Bickerton, J Amer Chem. Soc., 67 (1945) 2261
12 V N. Belov and K.K. Savich, Zh. Obshch. Khim., 17 (1947) 262
13 H Z Lecher and W B Hardy, J Amer Chem. Soc., 70 (1948) 3789
14 G.E. Utzinger and F.A. Regenass, Helv. Chim. Acta, 37 (1954) 1892.
15 U Wannagat and R Pfeiffenschneider, Z. Anorg Allg Chem., 297 (1958) 151.
16 J V Quagliano, J Fujita, G Franz, D J Phillips, J A Walmsley and S Y. Tyree, J Amer Chem.
   Soc. 83 (1961) 3770
17 R L Carlin, J Amer Chem. Soc , 83 (1961) 3773
18 K Issleib and A Kreibich, Z Anorg Allg Chem, 313 (1961) 338
19 L. Garcia and M. Orchin, J. Chem. Soc., London, (1961) 2254
20 E Ochiai, Aromatic Amine Oxides Elsevier, Amsterdam, 1967
21 E Ochiai, J Org Chem., 18 (1953) 534
22 J Meisenheimer and E Stotz, Ber Deut Chem Ges., 58 (1925) 2334
23 H Bohme, Ber. Deut Chem. Ges., 70 (1937) 379
24 P. Baumgarten, R. Merlander and J. Olshausen, Ber Deut Chem. Ges., 66 (1933) 1803
25 G Heller and A Sourlis, Ber Deut Chent Ges, 41 (1908) 2692
26 R A Barnes, J Amer Chem. Soc. 81 (1959) 1935
27 A R Katritzky, A M. Monro, J A T Beard, D P Dearnzley and N J Earl, J Chem. Soc., London,
   (1958) 2182
28 A.R. Katritzky and J.M. Lagowski, J. Chem. Soc., London, (1961) 43.
29 R A Abramovitch and J B Davis, J Chem Soc B, (1966) 1137
30 A R Kairitzky, Quart Rev., Chem. Soc., 10 (1956) 395
31 A C Caron, GJ Palentk, E Goldish and J Donohue, Acta Crystallogr, 17 (1964) 102
32 H H Jaffé, J Amer Chem. Soc., 76 (1954) 3527
33 P G Tsoucans, Acta Crystallogr, 14 (1961) 909
34 C Résat, Acta Crystallogr, 13 (1960) 63
35 E L Eichhorn, Acta Crystallogt, 9 (1956) 787
36 E P Linton, J Amer Chem Soc., 62 (1940) 1945
```

- 37 H H Jaffé, Chens. Rev., 51 (1953) 191
- 38 H H Jaffé and H L Jones, Advan Heterocycl Chem., 3 (1964) 209
- 39 M Ito and N Hata, Bull Chem Soc Jap., 28 (1955) 260
- 40 N Hata, Bull Chem. Soc Jap., 34 (1961) 1440, 1444, N Hata and I Tanaka, J Chem Phys., 36 (1962) 2072
- 41 H. Hirayama and T. Kubota, Shionogi Kenkyusho Nempo, 2 (1952) 121
- 42 H H Jaffé, J Amer Chem. Soc , 77 (1955) 4451
- 43 H Shindo, Pharm Bull, 4 (1956) 460. Chem Pharm Bull, 6 (1958) 171, 7 (1959) 791
- 44 G Costz and P. Blasina, Z Phys Chem. (Frankfurt am Ma 11) 4 (1955) 24, G Sartori, G Costa and P Blasina, Gazz Chim. Ital., 85 (1955) 1085
- 45 A R Katritzky, J A.T. Beard and N A. Coats, J Chem Soc., London, (1959) 3680, A R. Katritzky and J N Gardner, J Chem Soc., London, (1958) 2192, A R Katritzky and A R Hands, J Chem Soc., London, (1958) 2195

- 46 Y. Matsui, H. Iwatani, H. Miyazaki, M. Takasuka and T. Kubota, Symp Infrared Raman Spectra, Tokyo, November 19, 1964
- 47 S Kida, J V Quagliano, J A Walmsley and S Y Tyree, Spectrochum. Acta, 19 (1963) 189
- 48 Y Kakiuti, S Kida and J V Quagliano, Spectrochim Acta, 19 (1963) 201
- 49 T Okamoto, Y. Kawazoe, H Hotta and M. Itoh, Symp N-Oxide Chem. Abstr., Institute of Physical and Chemical Research, Tokyo, December 1962
- 50 H H Jaffé and G O Doak, J Amer Chem Soc., 77 (1955) 4441
- 51 H C Brown and Y Okamoto, J Amer Chem Soc, 79 (1957) 1913, N C Deno and W L Evans, J Amer Chem Soc, 79 (1957) 5804, D H McDaniel and H C Brown, J Org Chem. 23 (1958) 425
- 52 H H Jaffé, J Org Chem., 23 (1958) 1790
- 53 D W Herlocker, R S Drago and V Imhof-Meek, Inorg Chem., 5 (1966) 2009
- 54 T Kubota and H Miyazaki, Bull Chem Soc Jap , 35 (1962) 1549, (1966) 2057
- 55 J H Nelson, R G Garvey and R O Ragsdale, J Heterocycl Chem., 4 (1961) 591
- 56 J F Vozza, J Org Chem., 27 (1962) 3856
- 57 M Szafran, Bull Acad Pol Sci, Ser Sci Chim, 11 (1956) 111
- 58 D Cook, Chem Ind (London), (1963) 607
- 59 F Kröhnke and H Schafer, Chem Ber , 95 (1962) 1098
- 60 K F Purcell and R S Drago, J Amer Chem Soc., 89 (1967) 2874
- 61 G Selher and B Wojtkowiak, J Chim Phys Physicochum Biol., 65 (1968) 936
- 62 J H Nelson, L C Nathan and R O Ragsdale, J Amer Chem Soc., 90 (1968) 5754
- 63 H Huayama and T Kubota, Yakugaku Zasshi, 75 (1955) 1540, 77 (1957) 785, T Kubota and H Miyazaki, Chem. Pharm. Bull., 9 (1961) 948
- 64 A Kolbe and H Pracejus, Ber Bunsenges Phys Chem., 70 (1966) 883.
- 65 S Ghersett, G Maccagnant, A Mangint and F Montanan, J Heterocycl Chem., 6 (1969) 859
- 66 T Kubota, Nippon Kagaku Zasshi, 78 (1957) 196
- 67 R C Gardner and R O Ragsdale, Inorg Chim Acta, 2 (1968) 139
- 68 T Kubota, K Ezumi, M Yamakawa and Y Matsui, J Mol Spectrosc, 24 (1967) 378
- 69 N Kulevsky and R G Severson, Jr., Spectrochim Acta, Part A, 26 (1970) 2227, J Phys Chem., 75 (1971) 2504
- 70 P W N M van Leeuwen and W L Groeneveld, Inorg Nucl Chem Lett., 3 (1967) 145
- 71 K Starke, J Inorg Nucl Chem., 11 (1959) 77
- 72 S I Shupack and M Orchin, J Amer Chem Soc., 86 (1964) 586
- 73 P Schmidt and M Orchin, Inorg Chem., 6 (1967) 1260
- 74 W H Clement and M Orchin, J Organometal Chem., 3 (1965) 98
- 75 P.D. Kaplan, Ph. D. Thesis. University of Cincinnati, Ohio, U.S.A., 1967.
- 76 L. Garcia, S.I. Shupack and M. Orchin, Inorg. Chem., 1 (1962) 893
- 77 S I Shupack and M Orchin, J Amer Chem. Soc , 85 (1963) 902
- 78 W Clement, B Barker and M Orchin, data reported in ref. 2
- 79 A R Brause, M. Rycheck and M Orchin, J Amer Chem Soc., 89 (1967) 6500
- 80 W H Clement, J Organometal Chem., 10 (1967) P19
- 81 S M Horner, S Y Tyree and D L Venezky, Inorg Chem. I (1962) 844.
- 82 NM Karayannis, MJ Strocko, CM Mikulski, EE Bradshaw, LL Pytlewski and MM Labes, J Inorg Nucl Chem, 32 (1970) 3962
- 83 H Bohland and E Niemann, Z Anorg Allg Chem., 373 (1970) 217
- 84 M Hamana, Yakugaku Zassin, 71 (1951) 263, 75 (1955) 121, 123, 127, 130, 135
- 85 Z. Talik, Rocz Chem., 35 (1961) 475, R A Abramovitch and K A H Adams, Can J Chem., 39 (1961) 2134.
- 86 R.F. Evans and H.C. Brown, J. Org. Chem., 27 (1962) 1665, A.S. Elina and O. Yu. Magdson, Zh. Obshch. Khim., 25 (1955) 149.
- 87 H J. den Hertog and J Overhoff, Rec Trav Chim. Pays-Bas, 69 (1950) 468, Y Kidani and H Otomasu, Pharm. Bull., 4 (1956) 391
- 88 K Takeda and K Tokuyama, Yakugaku Zasshi, 75 (1955) 620, D I Relyea, P O Tawney and A R Williams, J Org Chem., 27 (1962) 477, S Furukawa, Pharm Bull., 3 (1955) 230

J Chem. Soc . London, (1960) 1878

89 M Hamana and K Funakoshi, Yakugaku Zasshi, 80 (1960) 1027, F.A. Daniher and B.E. Hackley, Jr., J. Org. Chem., 31 (1966) 4267. 90 E. Howard and W.F. Olszewski, J. Amer. Chem. Soc., 81 (1959) 1483 91 T R. Emerson and C W. Rees, J. Chem. Soc., London, (1962) 1917. 92 J. Eisch and H. Gilman, Chem. Rev., 57 (1957) 561. 93 B Klein, N E Hetman and M E. O'Donnell. J Org Chem., 28 (1963) 1682. 94 L Bernardi, G. Palamidessi, A. Leone and G Larini, Gazz Chim Ital, 91 (1961) 1431 950T Kato and H. Yamanaka, J Org Chem., 30 (1965) 910 96 U Sartorelli, F Canziani and F Zingales, Inorg Chem., 5 (1966) 2233 97 T. Ukai, Y. Yamamoto and S. Hirano, Yakugaku Zasshi, 73 (1953) 823. 98 R.A. Abramovitch, M. Saha, E.M. Smith and R.T. Coutts, J. Amer. Chem. Soc., 89 (1967) 1537 99 1 Lindqvist, Inorganic Adduct Molecules of Oxo-Compounds, Springer Verlag, Berlin, 1963 100 R S. Drago, J T Donoghue and D W Herlocker, Inorg Chem., 4 (1965) 836 101 F A Cotton, R D Barnes and E Bannister, J Chem Soc., London, (1960) 2199 102 D J Phillips and S Y Tyree, J Amer Chem Soc., 83 (1961) 1806 103 G.A Abakumov, V D Tikhonov and G A Razuvaev, Doki Akad Nauk SSSR, 187 (1969) 571 104 W Beck, H Schmidtner and H J Keller, Chem. Ber., 100 (1967) 503 105 B M. Hoffmann and T B Eames, J Amer Chem. Soc., 91 (1969) 5168 106 N.M. Karayannis, C.M. Paleos, H. Blum and M.M. Labes, 160th Nat. Meet., Amer. Chem. Soc., Chicago, Ill., September 13-18, 1970, Abstr. No. INOR 162, N.M. Katayannis, C.M. Paleos. C M Mikulski, L L Pytlewski, H Blum and M M Labes, Inorg Chim. Acta, 7(1) (1973) 107 W Beck and K. Schmidtner, Chem. Ber., 100 (1967) 3363 108 R. Whyman, W E Hatfield and J S Paschal, Inorg Chim. Acta, 1 (1967) 113 109 R L. Carlin, J Rottman, M Dankleff and J O Edwards, Inorg Chem. 1 (1962) 182 110 R L Carlin and M J Baker, J Chem. Soc., London, (1964) 5008 111 J Reedijk, Rec Trav Chim Pays-Bas, 88 (1969) 499 112 F Kütek and B. Dušek, Coll Czech Chem Commun., 35 (1970) 13 113 V N Krishnamurthy and S Soundararajan, Can J Chem. 45 (1967) 189 114 V Krishnan and C.C. Patel, Can. J. Chem., 43 (1965) 2685 115 R G Garvey and R O Ragsdale, Inorg Chem., 4 (1965) 1604 116 P.R. Murthy and C.C. Patel, Can. J. Chem., 42 (1964) 856 117 J.H Nelson, L.C. Nathan and R.O. Ragsdale, Inorg. Chem., 7 (1968) 1840. 118 J H Neison and R O Ragsdale, Inorg Chim Acia, 2 (1968) 230 119 L.C. Nathan and R.O. Ragsdale, Inorg. Chim. Acta, 3 (1969) 473 120 NP Crawford and G A Melson, J Chem Soc., A, (1970) 141 121 V Krishnan and C C Patel, Can J Chem., 44 (1966) 972 122 D.W. Herlocker, Ph.D. Thesis University of Illinois, Urbana, Ill., U.S.A., 1966, J. Inorg. Nucl. Chem., 34 (1972) 389 123 W Byers, A B P Lever and R V Parish, Inorg Chem., 7 (1968) 1835 124 R J Gillespie, J Amer Chem. Soc., 82 (1960) 5978, J Chem Educ., 40 (1963) 295 125 R S Sager, R J Williams and W H Watson, Inorg Chem, 6 (1967) 951 126 S Scavnicar and B Matkovic, Chem Commun, (1967) 297, Acta Crystallogr, Sect B, 25 (1969) 2046 127 R S Sager and W H Watson, Inorg Chem., 7 (1968) 2035 128 J D Lee, D S Brown and B G A Melsom, Acta Crystallogr, Sect B. 25 (1969) 1378 129 H L Schafer, J C Morrow and H M Smith, J Chem Phys, 42 (1965) 504 130 R S Sager and W H. Watson, Inorg Chem., 7 (1968) 1358 131 E.A Blom, BR Penfold and W.T Robinson, J Chem Soc A, (1969) 913 132 W D Horrocks, Jr., D H Templeton and A Zalkin, Inorg Chem., 7 (1968) 1552 133 B A Coyle and J A Ibers, Inorg Chem., 9 (1970) 767 134 R J Williams, D T Cromer and W H Watson, Acta Crystallogr Sect B, 27 (1971) 1619 135 F A Cotton and E Bannister, J Chem Soc., London, (1960) 1873, E Bannister and F A Cotton,

- 136 S.H. Hunter, R.S. Nyholm and G.A. Rodley, Inorg. Chim. Acta, 3 (1969) 631
- 137 N M Karnyannis, C.M Mikulski, L L Pytlewski and M M Labes, Inorg Chem., 9 (1970) 582
- 138 F Mani, Inorg. Nucl. Chem Lett., 7 (1971) 447
- 139 J.T. Donoghue and R.S. Drago, Inorg. Chem., 1 (1962) 866, 2 (1963) 1158
- 140 A.M. Brodie, S.H. Hunter, G.A. Rodley and C.J. Wilkins, Inorg. Chim. Acta, 2 (1968) 195
- 141 J O Edwards, R J Goetsch and J A Stritar, Inorg Chim Acia, 1 (1967) 360
- 142 N M Karayannis, J V. Minkiewicz, L L Pytlewski and M M Labes, Inorg Chim. Acta, 3 (1969)
- 143 N M Karayannis, S D Sonsino, C M Mikulski, M J Strocko, L L Pytlewski and M M Labes, Inorg. Chim. Acta, 4 (1970) 141
- 144 J H Nelson and R O Ragsdale, Inorg Chim. Acta, 2 (1968) 439
- 145 N M Karayannis, L L Pytlewski and M M Labes, Inorg Chim Acta, 3 (1969) 415
- 146 G. Schmauss and H. Specker, Z. Anorg. Allg. Chem., 364 (1969) I.
- 147 P.M. Ennquez, S.S. Zumdahl and L. Forshey, Chem. Commun., (1970) 1527
- 148 L C. Nathan, J H Nelson, G L Rich and R O Ragsdale, Inorg Chem. 8 (1969) 1494
- 149 C J Popp, L C Nathan, T E McKean and R O Ragsdale, J Chem. Soc A, (1970) 2394
- 150 E L Muetterties, J Amer Chem Soc., 82 (1960) 1082.
- 151 C-1 Branden, Acta Chem Scand , 17 (1963) 759.
- 152 D S Dyer and R O Ragsdale, Chem. Commun, (1966) 601, Inorg Chem., 6 (1967) 8
- 153 D S Dyer and R O Ragsdale. Inorg Chem. 8 (1969) 1116
- 154 R W Klusber and W D Horrocks, Jr., J Amer. Chem Soc., 87 (1965) 5350
- 155 R W Kluiber and W D Horrocks, Jr., J Amer Chem Soc., 88 (1966) 1399
- 156 R.W Klusber and W D. Horrocks, Jr., Inorg. Chem., 6 (1967) 1427
- 157 R W Klutber, F Thalter, R A Low and W D Horrocks, Jr., Inorg Chem., 9 (1970) 2592
- 158 H N Ramaswamy and H B Jonassen, Inorg Chem., 4 (1965) 1595
- 159 N M Karayannis, C M Mikulski, L L Pytlewski and M M Labes, 162nd Nat Meet. Amer Chem. Soc. Washington D C September 12-17, 1971, Abstr. No. INOR 87 J. Inorg. Nucl. Chem., 34 (1972) 3139.
- 160 M Compolint and N Nardt, Inorg Chem. 5 (1966) 41, 1150, M. Ciampolint and G.P. Speront, Inorg Chem., 5 (1966) 45, F. Lions, I.G. Dance and J. Lewis, J. Chem. Soc. A, (1967) 565.
- 161 N F Curtis and Y M Curtis, Inorg Chem., 4 (1965) 1804
- 162 A B P. Lever, E. Mantovani and B S. Ramaswamy, Can. J. Chem., 49 (1971) 1957
- 163 Y Muto, M Kato, HB Jonassen and HN Ramaswamy, Bull Chem. Soc. Jap. 40 (1967) 1535
- 164 M Kato, Y Muto and H B Jonassen, Bull Chem. Soc Jap , 40 (1967) 1738
- 165 Y Muto, M Kato, H B Jonassen and K Kakuuchi, Bull Chem Soc Jap., 41 (1968) 1495.
- 166 Y Muto, M Kato, H B Jonassen and L C Cusachs, Bull Chem. Soc Jap., 42 (1969) 417.
- 167 W H Watson, Inorg Chem., 8 (1969) 1879, and references therein
- 168 CM Harris, E Kokot, S L Lenzer and T N Lockyer, Chem Ind (London), (1962) 651
- 169 WE Hatfield and JS Paschal, J Amer Chem Soc., 86 (1964) 3888
- 170 WE Hatfield and J.C. Morrison, Inorg. Chem., 5 (1966) 1390.
- 171 T J Weeks, Jr and E L King, J Amer Chem. Soc., 90 (1968) 2545
- 172 D H. Brown, D Kenyon and DW A Shatp, J Chem Soc A, (1969) 1474
- 173 A J Pappas, F A Osterman, Jr and H B Powell, Inorg Chem, 9 (1970) 2695
- 174 D.A Couch, PS Elmes, JE Ferguson, ML Greenfield and CJ Wilkins, J Chem Soc A, (1967) 1813
- 175 NM Karayannis, AN Speca, LL Pytlewski and MM Labes, J Less-Common Metals, 22 (1970) 117
- 176 Y. Kawasaki, M. Hori and K. Uenaka, Bull. Chem. Soc. Jap., 40 (1967) 2463
- 177 S A. Cotton and J F Gibson, J Chem. Soc A, (1970) 2105
- 178 D X West, T J Delia and T M Wilcox, J Inorg Nucl Chem., 31 (1969) 3665
- 179 N.M. Karayannis, A.N. Speca, C.M. Mikulski, L.L. Pytlewski and M.M. Labes, J. Less-Common. Metals, 26 (1972) 407
- 180 G Schmauss and H Specker, Z Anorg Allg Chem., 383 (1968) 113

```
181 A.J Pappas, J.F. Villa and H.B. Powell, Inorg. Chem., 8 (1969) 550
182 N M Karayannis, C M Paleos, L.L. Pytlewski and M.M Labes, Inorg Chem., 8 (1969) 2559
183 J S Morrison and H.M. Haendler, J Inorg. Nucl. Chem., 29 (1967) 393.
184 H N. Ramaswamy and H B Jonassen, J Inorg. Nucl Chem., 27 (1965) 740
185 C R. Kanekar and S.V. Nipankar, Curr. Sci. (India), 35 (1966) 361.
186 R Whyman, D B Copley and W.E Hatfield, J Amer Chem. Soc., 89 (1967) 3135.
187 H. Shindo, Chem. Pharm. Bull., 8 (1960) 845.
188 R D Kross, V A Fassel and M. Margoshes, J Amer Chem. Soc., 78 (1956) 1332
189 R Whyman and W.E Hatfield, Inorg Chem., 6 (1967) 1859
190 F.E. Dickson, E.W. Gowling and F.F. Bentley, Inorg. Chem., 6 (1967) 1099.
191 F E Dickson, E W Baker and F.F Bentley, J Inorg Nucl Chem., 31 (1969) 559.
192 F E. Dickson, E W Baker and F F Bentley, Inorg Nucl. Chem. Lett., 5 (1969) 825
193 N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl.
    Chem., 33 (1971) 3185
194 R J H Clark, Spectrochim Acta, 21 (1965) 955.
195 I S Ahuja and P Rastogi, J Chem Soc A, (1970) 378
196 G Schmauss and H P. Fritz, Z Naturforsch B, 24 (1969) 279
197 T.B Brill and D W Wertz, Inorg Chem, 9 (1970) 2692
1981 S Ahuja, Indian J Chem. 9 (1971) 173
199 I S Ahuja and P Rastogi, J Inorg Nucl Chem., 32 (1970) 1381
200 P V. Balakrishnan, S K Patil and H V Venkatasetty, J Inorg Nucl Chem. 28 (1966) 537
201 W Kitching and V G Kumar Das, Aust J Chem., 21 (1968) 2401
202 R G Garvey and R O Ragsdale, J Inorg Nucl Chem, 29 (1967) 1527
203 W.R McGregor and B E Bridgland, J Inorg Nucl Chem., 31 (1969) 3325
204 C E. Michelson, D S Dyer and R O Ragsdale, J Inorg Nucl Chem, 32 (1970) 833
205 N M Karayannis, J T Cronin, C M Mikulski, L L Pytlewski and M M Labes, J fnorg Nucl
    Chem., 33 (1971) 4344
206 R.G Garvey and R O Ragsdale, Inorg Chim. Acta, 2 (1968) 191
207 C J. Popp, J H. Nelson and R O Ragsdale, J Amer Chem Soc 91 (1969) 610
208 CJ Popp and R O Ragsdale, J Chem Soc. A. (1969) 1892
209 M S Subramanian and V K Manchanda, J Inorg Nucl Chem., 33 (1971) 3001
210 C.R. Kanekar and H.V. Venkatasetty, Curr. Sci. (India), (1965) 555
211 I.R. Beattle, G P. McQuillan, L Rule and M Webster, J Chem. Soc. London. (1963) 1514
212 J P Clark and C J Wilkins, J Chem Soc A. (1966) 871
213 W Byers, B Fa-Chun Chou, A B P. Lever and R V Parish, J. Amer. Chem Soc., 91 (1969) 1329
214 W. Byers and A B P. Lever, 153rd Nat. Mest., Amer. Chem. Soc., Miami Beach, Florida, 1967,
    Abstr. No L106
215 A B P Lever, J Lewis and R S Nyholm, J Chem Soc, London, (1962) 5262
216 C K Jørgensen, Orbitals in Atoms and Molecules, Academic Press, New York, 1962, P Day and
    C K. Jørgensen, J. Chem. Soc., London, (1964) 6226, C K. Jørgensen, Mol. Phys., 6 (1963) 43
217 DW Meek, RS Drago and TS Piper, Inorg Chem., 1 (1962) 285
218 M Bán and J. Császár, Acta Chim (Budapest), 54 (1967) 133
219 J Reedijk, PW N.M. van Leeuwen and WL Groeneveld, Rec Trav Chim. Pays-Bos 87 (1968)
    129, J Reedyk, W L Driessen and W L Groeneveld, Rec Trav Chim. Pays. Bar, 88 (1969) 1095.
220 C V Berney and J.H Weber, Inorg Chem. 7 (1968) 283
221 H L Schläfer and H P. Opitz, Z. Elektrochem, 65 (1961) 372
222 B E Bridgland and W R McGregor, J Inorg Nucl Chem., 31 (1969) 43
223 R G Garvey and R O Ragsdale, J. Inorg Nucl. Chem., 29 (1967) 745
224 W.D. Perry, R S Drago, D W Herlocker, G W Pagenkopf and K Czworniak, Inorg Chem., 10
    (1971) 1087.
225 J A Bertrand and D L Plymale, Inorg Chem., 3 (1964) 775
```

226 L. El-Sayed and R O. Rogsdale, Incrg. Chem., 6 (1967) 1644

227 R D. Willett, J Inorg Nucl Chem., 29 (1967) 2482

```
228 M Kato, H B Jonassen and J C Fanning, Chem. Rev., 64 (1964) 99
229 W.E. Hatfield, Y. Muto, H.B. Jonassen and J.S. Paschal, Inorg. Chem., 4 (1965) 97.
230 S J Gruber, C.M Harris, E. Kokot, S L Lenzer, T N. Lockyer and E Sinn, Aust. J Chem., 20
    (1967) 2403
231 M Kuba, Y Kurodo, M Kishita and Y Muto, Aust J Chem., 16 (1963) 7.
232 W.E Hatfield, D B Copley and R. Whyman, Inorg Nucl Chem. Lett. 2 (1966) 373
233 Y Muto and H B Jonassen, Bull Chem. Soc. Jap., 39 (1966) 58
234 G F Kokoszka, H C Allen, Jr and G. Gordon, J Chem Phys., 46 (1967) 3013
235 K.E. Hyde, G Gordon and G F Kokoszka, J Inorg Nucl Chem., 30 (1968) 2155
236 M R Kidd, R S Sager and W H. Watson, Inorg Chem., 6 (1967) 946
237 M R Kidd and W H Watson, Inorg Chem. 8 (1969) 1886
238 W E Hatfield and Γ L Bunger, Inorg Chem. 5 (1966) 1161
239 W E Hatfield, CS Fountain and R Whyman, Inorg Chem., 5 (1966) 1855
240 R S Sager, R J Williams and W H Watson, Inorg Chem., 8 (1969) 694
241 J.C. Morrow, Nat. Meet., Amer. Crystallogr. Ass. Gathnburg, Tenn., U.S.A., June 1965.
242 D.R. Johnson and W.H. Watson, Inorg. Chem., 6 (1967) 1281, H.W. Watson and D.R. Johnson.
    J Caord Chem., 1 (1971) 145
243 A.D. Mighell, C.W. Reimann and A. Santoro, Chem. Commun., (1970) 204
244 J J R F DaSilva and R Wootton, Chem. Commun., (1970) 403
245 JJRF DaSdva, LF.V Boas and R Wootton, J Inorg Nucl Chem 33 (1971) 2029
246 E Sinn, Inorg Nucl Chem Lett., 5 (1969) 193.
247 J A Barnes, W C Barnes and W E Hatfield, Inorg Chim. Acta, 5 (1971) 276
248 W E Hatfield J A Barnes, D Y Jeter, R Whyman and E R Jones, Jr., J Amer Chem Soc., 92
    (1970) 4982
249 P.W. Anderson, Phys. Rev., 115 (1959) 2
250 GF Kokoszka, HC Allen, Jr and G Gordon, J Chem. Phys., 46 (1967) 3020
251 R.W Duerst and G Γ Kokoszka, J Chem Phys., 51 (1969) 1673
252 H D Smith, Jr., M A Robinson and S Papetti, Inorg Chem., 6 (1967) 1014
253 D P Graddon and G.M Mockler, Aust J Chem., 21 (1968) 1487
254 F.A. Cotton and R.H. Holm, J. Amer. Chem. Soc., 82 (1960) 2979
255 R O Ragsdale and B B. Stewart, Proc Chem Soc. London, (1964) 194, Inorg Chem. 2 (1963)
    1002.
256 D S Dyer and R O Ragsdale, J Amer Chem Soc., 89 (1967) 1528
257 D S Dyer and R O Ragsdale, J Phys Chem., 71 (1967) 2309
258 C E Michelson, D S Dyer and R.O Ragsdale, J Chem. Soc A, (1970) 2296
259 D S Dyer, Ph D Thesis, University of Utah, Salt Lake City, Utah, U S A, 1967
260 W D Horrocks, Jr., R W Kluiber and R A Low, Proc Int Conf Coord Chem., 9th, St Moritz-
    Bad Switzerland, September 1966
261 J Bertini, D Gatteschi and A Scozzafava, Inorg Chim Acta 6 (1972) 185
262 M J Scarlett A T Casey and R A Craig, Aust J Chem., 23 (1970) 1333
263 M J Scarlett, A T Casey and R A Craig, Aust J Chem. 24 (1971) 31
264 T Kubota, Nippon Kagaku Zasslii, 80 (1959) 578, J M Fritsch, TP Layloff and R N Adams,
   J Amer Chem Soc, 87 (1965) 1724
265 M L. Yount and S S. Zumdahl, Inorg Chem., 10 (1971) 1212
266 V G Kumar Das and W Kitching, J Organometal Chem., 13 (1968) 253
267 P D Kaplan and M Orchin, Inorg Chent, 4 (1965) 1393
268 R S Hamilton, Ph. D. Thesis, University of Cincinnati, Ohio, U.S.A., 1968
269 T B Brill and Z Z Hugus, Jr , J Inorg Nucl Chem , 33 (1971) 371
270 F Genet and J C Leguen, Acta Crystollogr, Sect B, 25 (1969) 2029
271 L.M. Epstein and D.K. Straub, Inorg. Chem., 8 (1969) 453
272 J D Donaldson and D.G Nicholson, J Chem Soc A, (1970) 145
273 B W Fitzsimmons, J Chem Soc A, (1970) 3235
274 D. Petridis, F.P. Mullins and C. Curran, Inorg. Chem., 9 (1970) 1270
```

```
275 F P Mullins, Can. J Chem. 48 (1970) 1677
276 L.R. Melby, N.J. Rose, E. Abramson and J.C. Caris, J. Amer. Chem. Soc., 86 (1964) 5117
277 E. Butter, W Seifert and H Holzapfel, Z Chem., 7 (1967) 23
278 K. Kreher, E. Butter and W. Seifert, Z. Naturforsch., Sect. B, 22 (1967) 242
279 E Butter and W Seifert, Z Anorg Allg Chem., 368 (1969) 133
280 R G Charles and R C Ohlmann, J Inorg Nucl Chem., 27 (1965) 119
281 N J Rose and E Abramson, J Chem Phys., 42 (1965) 1849
282 D.S. Brown, J D. Lee and B G A. Melsom, Chem. Commun., (1968) 852
283 J.D. Lee, D.S. Brown and B.G.A. McIsom. Acta Crystallogr., Sect. B. 25 (1969) 1595.
284 D R. Johnson and W H. Watson, Inorg. Chem., 10 (1971) 1069
285 R S Sager and W H Watson, Inorg Chem., 8 (1969) 308
286 L Goitc, D Hadži and F. Lazanini, Chem Commun. (1971) 860
287 C V Berney and J H. Weber, Inorg Chin. Acta, 5 (1971) 375
288 D M L Goodgame, M Goodgame and P J Hayward, J Chem Soc A, (1970) 1352
289 N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl.
    Chem., 33 (1971) 2691
290 G Schmauss and H Specker, Naturwissenschaften, 54 (1967) 442
291 R A Potts and A L Allred, Inorg Chem , 5 (1966) 1066
292 N.P. Crawford and G.A. Melson, J. Chem. Soc. A, (1969) 1049
293 F. Kûtek and B Dušek, Coll Czech Chem Commun, 35 (1970) 3768
294 See, for example, H W Coover, Jr and F B Joyner (to Eastman Kodak Co.), Brit. Pat., 1,000,348,
    Aug 4, 1965.
295 S Ya Shnaiderman and E N Knyazeva, Ukr Khim Zh. 32 (1966) 119
296 R G Garvey, Proc N Dak Acad Sci., 22 (1968) 113
297 O Piovesana and J Selbin, J Inorg Nucl Chem., 31 (1969) 1671
298 A.K. Majumdar and R.G. Bhattacharyya, Sci. Cult., 35 (1969) 271
299 J 1 McGovern and W G Fateley, Tech Rep AFML-TR-67-303, Part II, Air Force Materials
    Laboratory, Wright-Patterson AFB, Ohio, U.S.A., 1968
300 S Ya Shnaiderman and A N. Demidovskaya, Zh Neorg Khim, 14 (1969) 3291
301 J Reedijk and A M van der Kraan, Rec Trav Clim Pays-Bas, 88 (1969) 828
302 N M Karayannis, C M Mikulski and L L Pytlewski, unpublished data
303 M S Novakovskii, V N. Voinova, N S Pivnenko and N F Kozarinova, 2h Neorg Khim, 11 (1966)
   1738
304 H Brintzinger and R E Hester, Inorg Chem. 5 (1966) 980, and references therein
305 S P Sinha, Z Naturforsch A, 20 (1965) 1661
306 Société Des Usines Chimiques Rhone-Poulenc, Fr Addn, 89,238 (May 26, 1967), to Fr Pat,
    1,443,121
307 S. Amasa, D.H. Brown and D.W.A. Sharp, J. Chem. Soc. A. (1969) 2892
308 J. Kratsmár-Šmogrovič and M. Melník, Z. Naturforsch. B. 24 (1969) 1479
309 J Kohout and J Kratsmár-Šmogrovič, Chem. Zvestt, 22 (1968) 481
310 H Tom Dieck and H P. Brehm, Chem Ber, 104 (1969) 3577
311 G Schmauss and H Specker, Naturwissenschaften, 54 (1967) 248
31215 Ahuja and P Rastogi, J Chem Soc A, (1969) 1893
313 J.R. Allan, D.H. Brown, R.H. Nuttall and D.W.A. Sharp, J. Inorg. Nucl. Chem., 27 (1965) 1865.
    J Chem. Soc A, (1966) 1031
314 G Stephan and H Specker, Naturwissenschaften, 55 (1968) 443
315 P.C. H. Mitchell and R.J.P. Williams, J. Chem. Soc., London, (1960) 1912, A. Turco and
    C Pecile, Nature, 191 (1961) 66
316 PE Rakita, SJ. Kopperl and JP Fackler, Jr., J Inorg Nucl. Chem., 30 (1968) 2139
317 AV Ablov, DG Batyr and MP Starysh, Zh Neorg Khun, 16 (1971) 960
318 A G Kruger and G Winter, Aust J Chem., 24 (1971) 161
319 R A Field and D L Kepert, J Less-Common Metals, 13 (1967) 378
320 R A Field, D L Kepert and D Taylor, Inorg Chim. Acta, 4 (1970) 113
```

- 321 J E. Ferguson, B H Robinson and C J Wilkins, J Chem. Soc A, (1967) 486.
- 322 S M Homer and S Y Tyree, Jr , Inorg Chem., 1 (1962) 122
- 323 U Sartorelli, F Zingales and F Canziani, Chim. Ind (Milan), 49 (1967) 751.
- 324 H. Mimoun, I. Serree DeRoch and L. Sajus, Bull Soc Chim Fr., (1969) 1481
- 325 V.P. Shaburova, I.G. Yudelevich, V.G. Torgov and I.L. Kotlyarevsku, Zh. Anal. Khim., 26 (1971) 930.
- 326 A. Aráneo and A. Trovati, Inorg. Chim Acta, 3 (1969) 471
- 327 S 1 Shupack and M. Orchin, Inorg. Chem., 3 (1964) 374.
- 328 T A Weil, P Schmidt, M. Rycheck and M Orchin, Inorg Chem. 8 (1969) 1002.
- 329 J R Roy and M. Orchin, J Amer Chem Soc , 81 (1959) 305, 310.
- 330 P.D. Kaplan, P. Schmidt and M. Orchin, J. Amer. Chem. Soc., 89 (1967) 4537
- 331 M. Rycheck, Ph. D. Thesis, University of Cincinnati, Ohio, U.S. A., 1966.
- 332 P.D. Kaplan, P. Schmidt and M. Orchin, J. Amer. Chem. Soc., 91 (1969) 85.
- 333 R C Paul and S L Chadha, Indian J. Chem. 9 (1971) 175
- 334 A L. Fridman, T N. Ivshina, V P. Ivshin, V A Tartakovskii and S S. Novikov, Izv Akad. Nauk SSSR, Ser. Khim, (1969) 2336
- 335 I S. Ahuja and P. Rastogi, J. Inorg. Nucl. Chem., 32 (1970) 2665
- 336 I S Ahuta, Inorg Nucl Chem Lett., 6 (1970) 879.
- 337 A.T. McPhad and G.A. Sim, Chem. Commun., (1966) 21
- 338 H B Powell, Maung Tin Maung and J J Lagowski, J Chem Soc., London, (1963) 2484
- 339 H.B Powell and J.J Lagowski, J Chem Soc. A. (1966) 1282
- 340 S Soundaratajan, Proc Chem Symp, 1st 23-26 Sept 1969, Vol 1, p 203, Chem. Abstr 74 (1971) 3790ty
- 341 C H. Harrison and W.H. Watson, J. Inorg. Nucl. Chem. 32 (1970) 2255.
- 342 V V. Screbrennikov, E S. Pavlenko, V N. Kumok and N I. Belousova, Zh. Obshch. Khim., 39 (1969) 306.
- 343 G A Pneumaticakis, Chem Ind (London), (1968) 770
- 344 J V Kingston, E M Krankovits and R J Magee, J Inorg Nucl Chem., 31 (1969) 3181
- 345 V M Vdovenko, L G Mashirov and D N Suglobiov, Radiokhimiya, 9 (1967) 37
- 346 A V Nikolaev, V G Torgov, V K Roman, V A Mikhailov and I L Kottyarevsku, Radiokhimiya, 4 (1962) 296
- 347 J. Bolle and J. Tomaszewski (to Compagnie Française des Produits Chimiques Shell), Fr. Pat. 1,383,992, January 4, 1965
- 348 L B. Zimmer and K H. Lieser, Inorg. Nucl. Chem. Lett., 7 (1971) 1163
- 349 S Ernst and B Jezowska-Trzebiatowska, J Inorg Nucl Chem, 31 (1969) 2505
- 350 N Kulevsky and L. Sveum, J Inorg Nucl Chem, 27 (1965) 2111
- 351 N.E. Miller, Inorg Chem, 8 (1969) 1693.
- 352 A J Carty and D G Tuck, J Chem Soc A, (1966) 1081
- 353 E. Hayashi, E. Oishi, T. Tezuka and K. Ema, Yakugaku Zasshi, 88 (1968) 1333, G. Okusa, M. Kumagai and T. Itai, Chem. Commun., (1969) 710.
- 354 K. Issleib and H. Reinhold, Z. Anorg. Allg. Chem., 314 (1962) 113
- 355 C J Wilkins and H M Haendler, J Chem. Soc , London, (1965) 3174
- 356 P A Yeats, J R Sams and F Aubke, Inorg Chem., 9 (1970) 740
- 357 J H Holloway, G P McQuillan and DS Ross, J. Chem Soc A, (1969) 2505
- 358 C H Boehringer Sohn, Fr Pat., 1,389,821, February 19, 1965
- 359 P. Schicke, K R. Appel and L. Schroeder, Pflanzenschutzberichte, 38 (1968) 189
- 360 Y Sukata, K Adachi, Y. Akahon and E Hayashi, Yakugaku Zasshi, 87 (1967) 1374
- 361 M A Weiner, J Organometal Chem., 23 (1970) C20
- 362 A. Ohta and E. Ochiai, Chem. Pharm. Bull., 10 (1962) 1260.
- 363 E. Ochiai and A. Ohia, Sci. Pap. Inst. Phys. Chem. Res., Tokyo, 56 (1962) 290
- 364 G. Hilgetag and H. Teichmann, Chem. Ber., 96 (1963) 1446
- 365 C.L. Bell, J. Snoffner and L. Bauer, Chem. Ind. (London), (1963) 1353, 1435
- 366 D Hadži, Boll Scl. Fac Chim Ind Bologna, 21 (1963) 23

- 367 T Itas and S. Natsume, Chem Pharm. Bull., 11 (1963) 83
- 368 R.A. Potts, Inorg Chem., 9 (1970) 1284
- 369 M. Ziegler and G. Stephan, Mikrochim, Acta, (1970) 628
- 370 R.G. Beiles and E.M. Beiles, Zh. Neorg. Khim. 12 (1967) 884
- 371 D. Hadži, J. Chem. Soc., London, (1962) 5128
- 372 D Hadži and N. Kobilarov, J Chem. Soc. A. (1966) 439.
- 373 S. Olejnik, A.M. Posner and J.P. Quirk, Spectrochim Acta, Part A, 27 (1971) 2005
- 374 A Heller, R. Elson and Y Marcus, J Chem. Soc., London, (1962) 4738.
- 375 H. Yoneda, G.R. Choppin, J L. Bear and A J. Graffeo, Inorg. Chem., 4 (1965) 244
- 376 P.G. Manning, Can. J. Chem., 44 (1966) 1471.
- 377 A N. Kumar and R P. Singh, J. Indian Chem. Soc., 40 (1963) 774
- 378 B N Figgis, J. Lewis, F E Mabbs and G A Webb, J Chem Soc A, (1967) 442
- 379 (a) A E. Hohaus and E. Umland, Chem Ber., 102 (1969) 4025, (b) B D Jerchel and W. Melloh, Justus Liebigs Ann. Chem., 613 (1958) 144
- 380 H. Sigel and H. Brintzinger, *Helv Chim Acta*, 46 (1963) 701, H. Sigel, H. Brintzinger and H. Erlenmayer, *Helv. Chim. Acta*, 46 (1963) 712
- 381 (a) D D Pestin, J Amer. Chem Soc., 82 (1960) 5642, (b) R. Weiss and H. Venner, Hoppe-Seyler's Z Physiol Chem., 2 (1969) 350
- 382 (a) H Sigel and H Brintzinger, Helv Chim Acia, 47 (1964) 1701, H. Sigel, Helv Chim, Acia 48 (1965) 1519
- 383 J.N Gardner and A.R. Katntzky, J Chem Soc., London, (1957) 4375, R.A. Jones and A.R. Katntzky, J Chem Soc., London, (1960) 2937; A.R. Katntzky, J Chem. Soc., London, (1957) 191.
- 384 A Weiss and D R Harvey, Angew Chem, 76 (1964) 818; Angew Chem Int Ed Engl., 3 (1964) 698
- 385 Pen-Joung Sun, Q. Fernando and H. Freiser, Anal. Chem., 36 (1964) 2485
- 386 M A Robinson, J Inorg Nucl Chem., 26 (1964) 1277
- 387 J A W. Dalziel and M. Thompson, Analyst (London), 89 (1964) 707, 91 (1966) 98
- 388 A.F Krivis, E.S. Gazda, G.R. Supp and M. A. Robinson, Anal. Chem., 35 (1963) 966
- 389 J. Bernstein and K. Loose (to Olin Mathieson Chemical Corp.), U.S. Pat., 2,809,971, October 15, 1957
- 390 M. Edrissi and A. Massoumi, Microcliem. J., 16 (1971) 353.
- 391 D.R. Harvey and A. Weiss, Angew Chem., 77 (1965) 347; Angew. Chem. Int. Ed. Engl., 4 (1965) 357
- 392 J. Bernstein, J.L. Chen and G.N. Cyr (to E.R. Squibb & Sons, Inc.), U.S. Pat., 3,269,904, August 30, 1966; J. Bernstein, J.L. Chen and C.N. Cyr, (to Olin Mathieson Chemical Corp.), Fr. Pat., M3691, December 20, 1965.
- 393 See, for example A.K. Supestein and M.J. Janssen, Nature, 182 (1958) 1313, O.D. Morgan, Plant Dis. Rep., 43 (1959) 755, G.L. Barnes and R.S. Zerkel, Plant Dis. Rep., 45 (1961) 426, R.S. Driscoll, U.S. Forest Serv., Pac. Northwest Forest Range Exp. Sta., Res. Note PNW, 5 (1963), Forest, Abstr., 25 (1964) No. 915
- 394 E T Funa and D H Stemberg (to Geigy, J.R., A.G.), Ger Pat., 2,035,171, January 28, 1971
- 395 (a) J. P. Freeman and J.J. Gannon, J. Org. Chem., 34 (1969) 194; (b) E.P. Kohler and G.R. Barrett, J. Amer. Chem. Soc., 48 (1926) 1770.
- 396 A.N. Bhat and B.D. Jain, J. Sci. Ind. Res., Sect. B, 19 (1960) 16, 295, J. Indian Chem. Soc., 38 (1961) 327
- 397 J Mikulski, Kernenergie, 6 (1963) 71, M N. Al-Zagoum and C G Warren, J Inorg Nucl Chem, 31 (1969) 3465
- 398 K. Ramaiah and V R. Stinivasan, Proc. Indian Acad. Scr., Sect. A, 55 (1962) 360.
- 399 A N. Bhat, R.D. Gupta and B D. Jain, J. Indian Chem. Soc., 44 (1967) 187, Indian J. Appl. Chem., 30 (1967) 110
- 400 R D Gupta, G S Manku, A.N Bhat and B D Jam, J. Less-Common Metals, 18 (1969) 139, Curr. Sci. (India), 38 (1969) 265; Talanta, 17 (1970) 772; Anal Chim. Acta, 50 (1970) 109, Aust J Chem., 23 (1970) 1387

- 401 (a) Y Kidani and N Chiba, Chem Pharm. Bull., 7 (1959) 84, (b) Y. Kidani, Chem Pharm Bull., 6 (1958) 556
- 402 I Murpse and Y Demura, Mem Fac Sci., Kyushu Univ., Ser C, 4 (1961) 175; I Murase, Nippon Kagaku Zasshi, 75 (1954) 3465.
- 403 R L Dutta and S Lahiry, J Indian Chem Soc, 41 (1964) 62.
- 404 A T Balaban, i Bally, R J Bishop, C N. Rentea and L E Sutton, J Chem Soc, London, (1964) 2383
- 405 R S Nyholm and A Turco, Ric Sci. Parte 2, Sez A, 1 (1961) 97, J Chem Soc., London, (1962) 1121.
- 406 P.G. Simpson, A. Vinciguerra and J.V. Quaghano, Inorg. Chem., 2 (1963) 282
- 407 A Vinciguerra, P.G Simpson, Y. Kakuti and J.V Quagliano, Inorg. Chem., 2 (1963) 286
- 408 S.K. Madan and W.E. Bull, J. Inorg. Nucl. Chem., 26 (1964) 2211
- 409 S K, Madan and A.M Donohue, J. Inorg. Nucl. Chem., 28 (1966) 1303
- 410 D M. Mehs and S K Madan, J Inorg Nucl Chem., 30 (1968) 3017
- 411 W.V Millet and S.K. Madan, J. Inorg. Nucl. Chem., 31 (1969) 1427, 32 (1970) 3710
- 412 PV. Balakrisknan, SK. Patil, H.D. Sharma and H.V. Venkatasetty, Can. J. Chem., 43 (1965) 2052
- 413 I Bertini, D Gatteschi and L J. Wilson, Inorg Chim Acta, 4 (1970) 629
- 414 M. Szatran, Spectrochim Acta, 19 (1963) 2132
- 415 R. Kuhn and W Blau, Justus Liebigs Ann Chem., 615 (1958) 99, 108.
- 416 E.J. Corey, A.L. Borror and T. Foglia, J. Org. Chem., 30 (1965) 288.
- 417 M. Tong and D G. Brewer, Can J. Chem, 49 (1971) 3425.
- 418 S. Kada, Bull Chem. Soc Jap , 36 (1963) 712
- 419 D.W. Herlocker and R S. Drago, Inorg Chem., 7 (1968) 1479.
- 420 D.W Herlocker, Inorg Chem, 8 (1969) 2037
- 421 D.W Herlocker, J. Inorg. Nucl. Chem., 30 (1968) 2197
- 422 S.H. Hunter, V.M. Langford, G.A. Rodley and C.J. Wilkins, J. Chem. Soc. A, (1958) 305
- 423 M. Kimura, Y. Kuroda and I. Shibuya, Bull Chem. Soc. Jap., 41 (1968) 2026
- 424 M J Frazer, W. Gerrard and J A Spillman, J Inorg Nucl. Chem., 26 (1964) 1471
- 425 D W. Cunningham and M O. Workman, J Inorg Nucl Chem, 33 (1971) 3861
- 426 S.H. Hunter, K. Emerson and G.A. Rodley, Chem. Commun., (1969) 1398
- 427 M E Peach and T.C. Waddington, J Chem Soc., London, (1962) 2680
- 428 F. Schindler and H. Schmidbaur, Chem. Ber., 100 (1967) 3655
- 429 M. Kimura and Y. Kuroda, Spectrochim. Acta, 22 (1966) 47
- 430 P A. Giguère and D Chin, Can J Chem, 39 (1961) 1214
- 431 E S Pavlenko, V N Kumok and V V. Serebrennikov, Zh. Obshch Khim., 38 (1968) 2720
- 432 J T Summers and J.V. Ouaghano, Inorg. Chem., 3 (1964) 1767
- 433 C.A. Warnser, W.B. Fox, B. Sukornick, J.R. Holmes, B.B. Stewart, R. Juurik, N. Vanderkool and D. Gould, Inorg. Chem., 8 (1969) 1249
- 434 E.G. Rozantzev, Russ. Chem. Rev., 35 (1966) 658
- 435 A.K. Hoffman and A T Henderson, J Amer. Chem. Soc, 83 (1961) 4671.
- 436 R. Brière, H. Lemaue and A. Rassat, Bull. Soc. Chim. Fr., (1965) 3273, G. Chapelet-LeTourneux, H. Lemaue and A. Rassat, Bull. Soc. Chim. Fr., (1965) 3283, R. Brière, R. M. Dupeyre, H. Lemaue, C. Morat, A. Rassat and P. Rey, Bull. Soc. Chim. Fr., (1965) 3290
- 437 O H. Griffith and A S. Waggoner, Accounts Chem. Res., 2 (1969) 17.
- 438 Yau Yan Lun and R S Drago, J Amer. Chem. Soc., 93 (1971) 891.
- 439 B M. Hoffman and T.B. Eames, J. Amer Chem. Soc., 91 (1969) 2169.
- 440 D.G Brown, T. Maier and R.S. Drago, Inorg. Chem., 10 (1971) 2804.
- 441 R.A. Zelopka and M.C. Baard, Chem. Commun., (1970) 1448, J. Amer. Chem. Soc., 93 (1971) 6066.
- 442 L.A. Krinitskaya and S.N. Dobryakov, Izv. Akad. Nauk SSSR, Ser. Khim., (1966) 582.
- 443 D Wilbur and R.A. Kreihck, J. Chem. Phys., 52 (1970) 1643
- 444 Yau Yan Lim and R.S. Drago, Inorg. Chem., 11 (1972) 1334.
- 445 C.M. Paleos, N.M. Karayannis and M.M. Labes, Chem. Commun., (1970) 195

446 T. Buckman, F.S. Kennedy and J.M. Wood, Biochemistry, 8 (1969) 4437, 447 W. Beck, K. Schorpp and K.H. Stetter, Z. Naturforsch. B, 26 (1971) 684.